Molecular Biotechnology

, Volume 60, Issue 6, pp 435–453 | Cite as

Diversity of Immunoglobulin (Ig) Isotypes and the Role of Activation-Induced Cytidine Deaminase (AID) in Fish

  • Bhakti Patel
  • Rajanya Banerjee
  • Mrinal Samanta
  • Surajit Das
Review

Abstract

The disparate diversity in immunoglobulin (Ig) repertoire has been a subject of fascination since the emergence of prototypic adaptive immune system in vertebrates. The carboxy terminus region of activation-induced cytidine deaminase (AID) has been well established in tetrapod lineage and is crucial for its function in class switch recombination (CSR) event of Ig diversification. The absence of CSR in the paraphyletic group of fish is probably due to changes in catalytic domain of AID and lack of cis-elements in IgH locus. Therefore, understanding the arrangement of Ig genes in IgH locus and functional facets of fish AID opens up new realms of unravelling the alternative mechanisms of isotype switching and antibody diversity. Further, the teleost AID has been recently reported to have potential of catalyzing CSR in mammalian B cells by complementing AID deficiency in them. In that context, the present review focuses on the recent advances regarding the generation of diversity in Ig repertoire in the absence of AID-regulated class switching in teleosts and the possible role of T cell-independent pathway involving B cell activating factor and a proliferation-inducing ligand in activation of CSR machinery.

Keywords

Activation-induced deaminase (AID) B cell activating factor (BAFF) Isotype switching Immunoglobulins Teleosts 

Abbreviations

VLRs

Variable lymphocyte receptors

Ig

Immunoglobulin

SHM

Somatic hypermutation

CSR

Class-switch recombination

GC

Gene conversion

AID

Activation-induced cytidine deaminase

APOBEC

Apolipoprotein B mRNA-editing catalytical component

BAFF

B cell activating factor

APRIL

A proliferation-inducing ligand

TLR

Toll-like receptors

TNF

Tumour necrosis factor

NF-κB

Nuclear factor-κB

MHC

Major histocompatibility complex

MDM2

Mouse double minute 2 homolog

LPS

Lipopolysaccharide

Notes

Acknowledgements

Authors wish to thank the National Agricultural Science Fund (NASF/BS-4003) of the Indian Council of Agricultural Research (ICAR), Government of India, for providing the research grant.

References

  1. 1.
    Laird, D. J., De Tomaso, A. W., Cooper, M. D., & Weissman, I. L. (2000). 50 million years of chordate evolution: Seeking the origins of adaptive immunity. Proceedings of the National Academy of Sciences, 97, 6924–6926.CrossRefGoogle Scholar
  2. 2.
    Pancer, Z., Amemiya, C. T., Ehrhardt, G. R., Ceitlin, J., Gartland, G. L., & Cooper, M. D. (2004). Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature, 430, 174–180.CrossRefPubMedGoogle Scholar
  3. 3.
    Cooper, M. D., & Alder, M. N. (2006). The evolution of adaptive immune systems. Cell, 124, 815–822.CrossRefPubMedGoogle Scholar
  4. 4.
    Guo, P., Hirano, M., Herrin, B. R., Li, J., Yu, C., Sadlonova, A., et al. (2009). Dual nature of the adaptive immune system in lampreys. Nature, 459, 796–801.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Flajnik, M. F. (2002). Comparative analyses of immunoglobulin genes: Surprises and portents. Nature Reviews Immunology, 2, 688–698.CrossRefPubMedGoogle Scholar
  6. 6.
    Sunyer, J. O. (2013). Fishing for mammalian paradigms in the teleost immune system. Nature Immunology, 14, 320–326.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Senger, K., Hackney, J., Payandeh, J., & Zarrin, A. A. (2015). Antibody isotype switching in vertebrates. In E. Hsu & L. D. Pasquier (Eds.), Pathogen–host interactions: antigenic variation v. somatic adaptations (pp. 295–324). Berlin: Springer.CrossRefGoogle Scholar
  8. 8.
    Hsu, E. (2016). Assembly and expression of shark Ig genes. The Journal of Immunology, 196, 3517–3523.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Poole, J. R. M., Paganini, J., & Pontarotti, P. (2017). Convergent evolution of the adaptive immune response in jawed vertebrates and cyclostomes: An evolutionary biology approach based study. Developmental & Comparative Immunology.  https://doi.org/10.1016/j.dci.2017.02.011.CrossRefGoogle Scholar
  10. 10.
    Burnet, F. M. (1957). A modification of Jerne’s theory of antibody production using the concept of clonal selection. The Australian Journal of Science, 20, 67–69.Google Scholar
  11. 11.
    Hodgkin, P. D., Heath, W. R., & Baxter, A. G. (2007). The clonal selection theory: 50 years since the revolution. Nature Immunology, 8, 1019–1026.CrossRefPubMedGoogle Scholar
  12. 12.
    Brack, C., Hirama, M., Lenhard-Schuller, R., & Tonegawa, S. (1978). A complete immunoglobulin gene is created by somatic recombination. Cell, 15, 1–14.CrossRefPubMedGoogle Scholar
  13. 13.
    Seidman, J. G., Leder, A., Edgell, M. H., Polsky, F., Tilghman, S. M., Tiemeier, D. C., et al. (1978). Multiple related immunoglobulin variable-region genes identified by cloning and sequence analysis. Proceedings of the National Academy of Sciences of the United States of America, 75, 3881–3885.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Weigert, M. G., Cesari, I. M., Yonkovich, S. J., & Cohn, M. (1970). Variability in the lambda light chain sequences of mouse antibody. Nature, 228, 1045–1047.CrossRefPubMedGoogle Scholar
  15. 15.
    Schilling, J., Clevinger, B., Davie, J. M., & Hood, L. (1980). Amino acid sequence of homogeneous antibodies to dextran and DNA rearrangments in heavy chain V-region gene segments. Nature, 283, 35–40.CrossRefPubMedGoogle Scholar
  16. 16.
    Tonegawa, S. (1983). Somatic generation of antibody diversity. Nature, 302, 575–581.CrossRefPubMedGoogle Scholar
  17. 17.
    Oettinger, M. A., Schatz, D. G., Gorka, C., & Baltimore, D. (1990). RAG-1 and RAG-2, adjacent genes that synergistically activate V (D) J recombination. Science, 248, 1517–1523.CrossRefPubMedGoogle Scholar
  18. 18.
    Bassing, C. H., Swat, W., & Alt, F. W. (2002). The mechanism and regulation of chromosomal V (D) J recombination. Cell, 109, S45–S55.CrossRefPubMedGoogle Scholar
  19. 19.
    Gellert, M. (2002). V(D)J recombination: RAG proteins, repair factors, and regulation. Annual Review of Biochemistry, 71, 101–132.CrossRefPubMedGoogle Scholar
  20. 20.
    Kataoka, T., Kawakami, T., Takahashi, N., & Honjo, T. (1980). Rearrangement of immunoglobulin gamma 1-chain gene and mechanism for heavy-chain class switch. Proceedings of the National Academy of Sciences of the United States of America, 77, 919–923.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Reynaud, C. A., Anquez, V., Grimal, H., & Weill, J. C. (1987). A hyperconversion mechanism generates the chicken light chain preimmune repertoire. Cell, 48, 379–388.CrossRefPubMedGoogle Scholar
  22. 22.
    Reynaud, C. A., Mackay, C. R., Müller, R. G., & Weill, J. C. (1991). Somatic generation of diversity in a mammalian primary lymphoid organ: The sheep ileal Peyer’s patches. Cell, 64, 995–1005.CrossRefPubMedGoogle Scholar
  23. 23.
    Litman, G. W., Rast, J. P., & Fugmann, S. D. (2010). The origins of vertebrate adaptive immunity. Nature Reviews Immunology, 10, 543–553.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Arakawa, H., Saribasak, H., & Buerstedde, J. M. (2004). Activation-induced cytidine deaminase initiates immunoglobulin gene conversion and hypermutation by a common intermediate. PLoS Biology, 2, 0967–0971.CrossRefGoogle Scholar
  25. 25.
    Muramatsu, M., Kinoshita, K., Fagarasan, S., Yamada, S., Shinkai, Y., & Honjo, T. (2000). Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell, 102, 553–563.CrossRefPubMedGoogle Scholar
  26. 26.
    Stavnezer, J., & Amemiya, C. T. (2004). Evolution of isotype switching. Seminars in Immunology, 16(4), 257–275.CrossRefPubMedGoogle Scholar
  27. 27.
    Wakae, K., Magor, B. G., Saunders, H., Nagaoka, H., Kawamura, A., Kinoshita, K., et al. (2006). Evolution of class switch recombination function in fish activation-induced cytidine deaminase, AID. International Immunology, 18, 41–47.CrossRefPubMedGoogle Scholar
  28. 28.
    Barreto, V. M., Pan-Hammarstrom, Q., Zhao, Y., Hammarstrom, L., Misulovin, Z., & Nussenzweig, M. C. (2005). AID from bony fish catalyzes class switch recombination. The Journal of Experimental Medicine, 202, 733–738.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wilson, M., Bengtén, E., Miller, N. W., Clem, L. W., Du Pasquier, L., & Warr, G. W. (1997). A novel chimeric Ig heavy chain from a teleost fish shares similarities to IgD. Proceedings of the National Academy of Sciences of the United States of America, 94, 4593–4597.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Flajnik, M. F., & Rumfelt, L. L. (2000). The immune system of cartilaginous fish. In L. Du Pasquier & G. W. Litman (Eds.), Origin and evolution of the vertebrate immune system (pp. 249–270). Berlin: Springer.CrossRefGoogle Scholar
  31. 31.
    Dooley, H., & Flajnik, M. F. (2006). Antibody repertoire development in cartilaginous fish. Developmental & Comparative Immunology, 30, 43–56.CrossRefGoogle Scholar
  32. 32.
    Danilova, N., Bussmann, J., Jekosch, K., & Steiner, L. A. (2005). The immunoglobulin heavy-chain locus in zebrafish: Identification and expression of a previously unknown isotype, immunoglobulin Z. Nature Immunology, 6, 295–302.CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang, Y. A., Salinas, I., Li, J., Parra, D., Bjork, S., Xu, Z., et al. (2010). IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nature Immunology, 11, 827–835.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Patel, B., Banerjee, R., Basu, M., Lenka, S., Samanta, M., & Das, S. (2016). Molecular cloning of IgZ heavy chain isotype in Catla catla and comparative expression profile of IgZ and IgM following pathogenic infection. Microbiology and Immunology, 60, 561–567.CrossRefPubMedGoogle Scholar
  35. 35.
    Basu, M., Lenka, S. S., Paichha, M., Swain, B., Patel, B., Banerjee, R., et al. (2016). Immunoglobulin (Ig) D in Labeo rohita is widely expressed and differentially modulated in viral, bacterial and parasitic challenges. Veterinary Immunology and Immunopathology, 179, 77–84.CrossRefPubMedGoogle Scholar
  36. 36.
    Castigli, E., Fuleihan, R., Ramesh, N., Tsitsikov, E., Tsytsykova, A., & Geha, R. S. (1995). CD40 ligand/CD40 deficiency. International Archives of Allergy and Immunology, 107, 37–39.CrossRefPubMedGoogle Scholar
  37. 37.
    Stavnezer, J. (1996). Immunoglobulin class switching. Current Opinion in Immunology, 8, 199–205.CrossRefPubMedGoogle Scholar
  38. 38.
    Geha, R. S., Jabara, H. H., & Brodeur, S. R. (2003). The regulation of immunoglobulin E class-switch recombination. Nature Reviews Immunology, 3, 721–732.CrossRefPubMedGoogle Scholar
  39. 39.
    Litinskiy, M. B., Nardelli, B., Hilbert, D. M., He, B., Schaffer, A., Casali, P., et al. (2002). DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nature Immunology, 3, 822–829.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Basu, M., Lenka, S. S., Paichha, M., Patel, B., Banerjee, R., Das, S., et al. (2016). B cell activating factor is induced by toll-like receptor and NOD-like receptor ligands and plays critical role in IgM synthesis in Labeo rohita. Molecular Immunology, 78, 9–26.CrossRefPubMedGoogle Scholar
  41. 41.
    Ramakrishnan, P., Wang, W., & Wallach, D. (2004). Receptor-specific signaling for both the alternative and the canonical NF-κB activation pathways by NF-κB-inducing kinase. Immunity, 21, 477–489.CrossRefPubMedGoogle Scholar
  42. 42.
    Arakawa, H., Hauschild, J., & Buerstedde, J. M. (2002). Requirement of the activation-induced deaminase (AID) gene for immunoglobulin gene conversion. Science, 295, 1301–1306.CrossRefPubMedGoogle Scholar
  43. 43.
    Honjo, T., Kinoshita, K., & Muramatsu, M. (2002). Molecular mechanism of class switch recombination: Linkage with somatic hypermutation. Annual Review of Immunology, 20, 165–196.CrossRefPubMedGoogle Scholar
  44. 44.
    Harris, R. S., Sale, J. E., Petersen-Mahrt, S. K., & Neuberger, M. S. (2002). AID is essential for immunoglobulin V gene conversion in a cultured B cell line. Current Biology, 12, 435–438.CrossRefPubMedGoogle Scholar
  45. 45.
    Delker, R. K., Fugmann, S. D., & Papavasiliou, F. N. (2009). A coming-of-age story: Activation-induced cytidine deaminase turns 10. Nature Immunology, 10, 1147–1153.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Gitlin, A. D., von Boehmer, L., Gazumyan, A., Shulman, Z., Oliveira, T. Y., & Nussenzweig, M. C. (2016). Independent roles of switching and hypermutation in the development and persistence of B lymphocyte memory. Immunity, 44, 769–781.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Parng, C. L., Hansal, S., Goldsby, R. A., & Osborne, B. A. (1996). Gene conversion contributes to Ig light chain diversity in cattle. The Journal of Immunology, 157, 5478–5486.PubMedGoogle Scholar
  48. 48.
    Weinstein, P. D., Anderson, A. O., & Maget, R. G. (1994). Rabbit IgH sequences in appendix germinal centers: VH diversification by gene conversion-like and hypermutation mechanisms. Immunity, 1, 647–659.CrossRefPubMedGoogle Scholar
  49. 49.
    Diaz, M., & Flajnik, M. E. (1998). Evolution of somatic hypermutation and gene conversion in adaptive immunity. Immunological Reviews, 162, 13–24.CrossRefPubMedGoogle Scholar
  50. 50.
    Muramatsu, M., Sankaranand, V. S., Anant, S., Sugai, M., Kinoshita, K., Davidson, N. O., et al. (1999). Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. The Journal of Biological Chemistry, 274, 18470–18476.CrossRefPubMedGoogle Scholar
  51. 51.
    Revy, P., Muto, T., Levy, Y., Geissmann, F., Plebani, A., Sanal, O., et al. (2000). Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell, 102, 565–575.CrossRefPubMedGoogle Scholar
  52. 52.
    Magor, B. G. (2015). Antibody affinity maturation in fishes—Our current understanding. Biology, 4, 512–524.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Wilson, M., Hsu, E., Marcuz, A., Courtet, M., Du Pasquier, L., & Steinberg, C. (1992). What limits affinity maturation of antibodies in Xenopus—The rate of somatic mutation or the ability to select mutants? The EMBO Journal, 11, 4337–4347.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Greenberg, A. S., Avila, D., Hughes, M., Hughes, A., McKinney, E. C., & Flajnik, M. F. (1995). A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature, 374, 168–173.CrossRefPubMedGoogle Scholar
  55. 55.
    Hinds-Frey, K. R., Nishikata, H., Litman, R. T., & Litman, G. W. (1993). Somatic variation precedes extensive diversification of germline sequences and combinatorial joining in the evolution of immunoglobulin heavy chain diversity. Journal of Experimental Medicine, 178(3), 815–824.CrossRefPubMedGoogle Scholar
  56. 56.
    Diaz, M., Greenberg, A. S., & Flajnik, M. F. (1998). Somatic hypermutation of the new antigen receptor gene (NAR) in the nurse shark does not generate the repertoire: Possible role in antigen-driven reactions in the absence of germinal centers. Proceedings of the National Academy of Sciences, 95(24), 14343–14348.CrossRefGoogle Scholar
  57. 57.
    Lee, S. S., Tranchina, D., Ohta, Y., Flajnik, M. F., & Hsu, E. (2002). Hypermutation in shark immunoglobulin light chain genes results in contiguous substitutions. Immunity, 16, 571–582.CrossRefPubMedGoogle Scholar
  58. 58.
    Cain, K. D., Jones, D. R., & Raison, R. L. (2002). Antibody–antigen kinetics following immunization of rainbow trout (Oncorhynchus mykiss) with a T-cell dependent antigen. Developmental & Comparative Immunology., 26(2), 181–190.CrossRefGoogle Scholar
  59. 59.
    Saunders, H. L., & Magor, B. G. (2004). Cloning and expression of the AID gene in the channel catfish. Developmental & Comparative Immunology, 28, 657–663.CrossRefGoogle Scholar
  60. 60.
    Yang, F., Waldbieser, G. C., & Lobb, C. J. (2006). The nucleotide targets of somatic mutation and the role of selection in immunoglobulin heavy chains of a teleost fish. The Journal of Immunology, 176(3), 1655–1667.CrossRefPubMedGoogle Scholar
  61. 61.
    Marianes, A. E., & Zimmerman, A. M. (2011). Targets of somatic hypermutation within immunoglobulin light chain genes in zebrafish. Immunology, 132(2), 240–255.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Matsumoto, M., Lo, S. F., Carruthers, C. J., Min, J., Mariathasan, S., Huang, G., et al. (1996). Affinity maturation without germinal centres in lymphotoxin-α-deficient mice. Nature, 382, 462.CrossRefPubMedGoogle Scholar
  63. 63.
    William, J., Euler, C., Christensen, S., & Shlomchik, M. J. (2002). Evolution of autoantibody responses via somatic hypermutation outside of germinal centers. Science, 297(5589), 2066–2070.CrossRefPubMedGoogle Scholar
  64. 64.
    Peters, A., & Storb, U. (1996). Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. Immunity, 4, 57–65.CrossRefPubMedGoogle Scholar
  65. 65.
    Wiesendanger, M., Scharff, M. D., & Edelmann, W. (1998). Somatic hypermutation, transcription, and DNA mismatch repair. Cell, 94, 415–418.CrossRefPubMedGoogle Scholar
  66. 66.
    Okazaki, I. M., Kinoshita, K., Muramatsu, M., Yoshikawa, K., & Honjo, T. (2002). The AID enzyme induces class switch recombination in fibroblasts. Nature, 416, 340–345.CrossRefPubMedGoogle Scholar
  67. 67.
    Yoshikawa, K., Okazaki, I. M., Eto, T., Kinoshita, K., Muramatsu, M., Nagaoka, H., et al. (2002). AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science, 296, 2033–2036.CrossRefPubMedGoogle Scholar
  68. 68.
    Martin, A., Bardwell, P. D., Woo, C. J., Fan, M., Shulman, M. J., & Scharff, M. D. (2002). Activation-induced cytidine deaminase turns on somatic hypermutation in hybridomas. Nature, 415, 802–806.CrossRefPubMedGoogle Scholar
  69. 69.
    Petersen-Mahrt, S. K., Harris, R. S., & Neuberger, M. S. (2002). AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature, 418, 99–104.CrossRefPubMedGoogle Scholar
  70. 70.
    Mayorov, V. I., Rogozin, I. B., Adkison, L. R., Frahm, C., Kunkel, T. A., & Pavlov, Y. I. (2005). Expression of human AID in yeast induces mutations in context similar to the context of somatic hypermutation at GC pairs in immunoglobulin genes. BMC Immunology, 6, 10.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Dudley, D. D., Chaudhuri, J., Bassing, C. H., & Alt, F. W. (2005). Mechanism and control of V (D) J recombination versus class switch recombination: Similarities and differences. Advances in Immunology, 86, 43–112.CrossRefPubMedGoogle Scholar
  72. 72.
    Mondal, S., Begum, N. A., Hu, W., & Honjo, T. (2016). Functional requirements of AID’s higher order structures and their interaction with RNA-binding proteins. Proceedings of the National Academy of Sciences of the United States of America, 113, E1545–E1554.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Di Noia, J., & Neuberger, M. S. (2002). Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature, 419, 43–48.CrossRefPubMedGoogle Scholar
  74. 74.
    Bransteitter, R., Pham, P., Scharff, M. D., & Goodman, M. F. (2003). Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proceedings of the National Academy of Sciences of the United States of America, 100, 4102–4107.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Dickerson, S. K., Market, E., Besmer, E., & Papavasiliou, F. N. (2003). AID mediates hypermutation by deaminating single stranded DNA. The Journal of Experimental Medicine, 197, 1291–1296.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Conticello, S. G. (2008). The AID/APOBEC family of nucleic acid mutators. Genome Biology, 9, 229.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Larijani, M., & Martin, A. (2012). The biochemistry of activation-induced deaminase and its physiological functions. Seminars in Immunology, 24(4), 255–263.CrossRefPubMedGoogle Scholar
  78. 78.
    Chester, A., Scott, J., Anant, S., & Navaratnam, N. (2000). RNA editing: Cytidine to uridine conversion in apolipoprotein B mRNA. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1494, 1–13.CrossRefGoogle Scholar
  79. 79.
    Kinoshita, K., & Honjo, T. (2001). Linking class-switch recombination with somatic hypermutation. Nature Reviews Molecular Cell Biology, 2, 493–503.CrossRefPubMedGoogle Scholar
  80. 80.
    Chester, A., Weinreb, V., Carter, C. W., & Navaratnam, N. (2004). Optimization of apolipoprotein B mRNA editing by APOBEC1 apoenzyme and the role of its auxiliary factor, ACF. Rna, 10, 1399–1411.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Vonica, A., Rosa, A., Arduini, B. L., & Brivanlou, A. H. (2011). APOBEC2, a selective inhibitor of TGFβ signaling, regulates left–right axis specification during early embryogenesis. Developmental Biology, 350, 13–23.CrossRefPubMedGoogle Scholar
  82. 82.
    Honjo, T., Muramatsu, M., & Fagarasan, S. (2004). AID: How does it aid antibody diversity? Immunity, 20, 659–668.CrossRefPubMedGoogle Scholar
  83. 83.
    Conticello, S. G., Thomas, C. J., Petersen-Mahrt, S. K., & Neuberger, M. S. (2005). Evolution of the AID/APOBEC family of polynucleotide (deoxy) cytidine deaminases. Molecular Biology and Evolution, 22, 367–377.CrossRefPubMedGoogle Scholar
  84. 84.
    Cullen, B. R. (2006). Role and mechanism of action of the APOBEC3 family of antiretroviral resistance factors. Journal of Virology, 80, 1067–1076.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Gandhi, S. K., Siliciano, J. D., Bailey, J. R., Siliciano, R. F., & Blankson, J. N. (2008). Role of APOBEC3G/F-mediated hypermutation in the control of human immunodeficiency virus type 1 in elite suppressors. Journal of Virology, 82, 3125–3130.CrossRefPubMedGoogle Scholar
  86. 86.
    Siriwardena, S., Chen, K., & Bhagwat, A. S. (2016). The functions and malfunctions of AID/APOBEC family deaminases: The known knowns and the known unknowns. Chemical Reviews, 116, 12688–12710.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Starrett, G. J., Luengas, E. M., McCann, J. L., Ebrahimi, D., Temiz, N. A., Love, R. P., et al. (2016). The DNA cytosine deaminase APOBEC3H haplotype I likely contributes to breast and lung cancer mutagenesis. Nature Communications, 7, 12918.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    King, J. J., & Larijani, M. (2017). A novel regulator of activation-induced cytidine deaminase/APOBeCs in immunity and cancer: Schrödinger’s CATalytic Pocket. Frontiers in Immunology, 8, 351.  https://doi.org/10.3389/fimmu.2017.00351.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Rogozin, I. B., Basu, M. K., Jordan, I. K., Pavlov, Y. I., & Koonin, E. V. (2005). APOBEC4, a new member of the AID/APOBEC family of polynucleotide (deoxy) cytidine deaminases predicted by computational analysis. Cell Cycle, 4, 1281–1285.CrossRefPubMedGoogle Scholar
  90. 90.
    Tacchi, L., Larragoite, E. T., Muñoz, P., Amemiya, C. T., & Salinas, I. (2015). African lungfish reveal the evolutionary origins of organized mucosal lymphoid tissue in vertebrates. Current Biology, 25(18), 2417–2424.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Saunders, H. L., Oko, A. L., Scott, A. N., Fan, C. W., & Magor, B. G. (2010). The cellular context of AID expressing cells in fish lymphoid tissues. Developmental & Comparative Immunology, 34, 669–676.CrossRefGoogle Scholar
  92. 92.
    Barreto, V. M., & Magor, B. G. (2011). Activation-induced cytidine deaminase structure and functions: A species comparative view. Developmental & Comparative Immunology, 35, 991–1007.CrossRefGoogle Scholar
  93. 93.
    King, J. J., Manuel, C. A., Barrett, C. V., Raber, S., Lucas, H., Sutter, P., et al. (2015). Catalytic pocket inaccessibility of activation-induced cytidine deaminase is a safeguard against excessive mutagenic activity. Structure, 23, 615–627.CrossRefPubMedGoogle Scholar
  94. 94.
    Shinkura, R., Ito, S., Begum, N. A., Nagaoka, H., Muramatsu, M., Kinoshita, K., et al. (2004). Separate domains of AID are required for somatic hypermutation and class-switch recombination. Nature Immunology, 5, 707–712.CrossRefPubMedGoogle Scholar
  95. 95.
    Geisberger, R., Rada, C., & Neuberger, M. S. (2009). The stability of AID and its function in class-switching are critically sensitive to the identity of its nuclear-export sequence. Proceedings of the National Academy of Sciences of the United States of America, 106, 6736–6741.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Xu, Z., Zan, H., Pone, E. J., Mai, T., & Casali, P. (2012). Immunoglobulin class-switch DNA recombination: Induction, targeting and beyond. Nature Reviews Immunology, 12, 517–531.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Zan, H., & Casali, P. (2013). Regulation of Aicda expression and AID activity. Autoimmunity, 46, 83–101.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Barreto, V., Reina-San-Martin, B., Ramiro, A. R., McBride, K. M., & Nussenzweig, M. C. (2003). C-terminal deletion of AID uncouples class switch recombination from somatic hypermutation and gene conversion. Molecular Cell, 12, 501–508.CrossRefPubMedGoogle Scholar
  99. 99.
    Ta, V. T., Nagaoka, H., Catalan, N., Durandy, A., Fischer, A., Imai, K., et al. (2003). AID mutant analyses indicate requirement for class-switch-specific cofactors. Nature Immunology, 4, 843–848.CrossRefPubMedGoogle Scholar
  100. 100.
    McBride, K. M., Barreto, V., Ramiro, A. R., Stavropoulos, P., & Nussenzweig, M. C. (2004). Somatic hypermutation is limited by CRM1-dependent nuclear export of activation-induced deaminase. The Journal of Experimental Medicine, 199, 1235–1244.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Ichikawa, H. T., Sowden, M. P., Torelli, A. T., Bachl, J., Huang, P., Dance, G. S., et al. (2006). Structural phylogenetic analysis of activation-induced deaminase function. The Journal of Immunology, 177, 355–361.CrossRefPubMedGoogle Scholar
  102. 102.
    Flajnik, M. F., & Kasahara, M. (2010). Origin and evolution of the adaptive immune system: Genetic events and selective pressures. Nature Reviews Genetics, 11, 47–59.CrossRefPubMedGoogle Scholar
  103. 103.
    Ramsden, D. A., Weed, B. D., & Reddy, Y. V. (2010). V (D) J recombination: Born to be wild. Seminars in Cancer Biology, 20(4), 254–260.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Cooper, M. D., & Herrin, B. R. (2010). How did our complex immune system evolve? Nature Reviews Immunology, 10, 2–3.CrossRefPubMedGoogle Scholar
  105. 105.
    Hirano, M., Das, S., Guo, P., & Cooper, M. D. (2011). The evolution of adaptive immunity in vertebrates. Advances in Immunology, 109, 125–157.CrossRefPubMedGoogle Scholar
  106. 106.
    Dehal, P., Satou, Y., Campbell, R. K., Chapman, J., Degnan, B., De Tomaso, A., et al. (2002). The draft genome of Ciona intestinalis: Insights into chordate and vertebrate origins. Science, 298, 2157–2167.CrossRefPubMedGoogle Scholar
  107. 107.
    Cannon, J. P., Haire, R. N., & Litman, G. W. (2002). Identification of diversified genes that contain immunoglobulin-like variable regions in a protochordate. Nature Immunology, 3, 1200–1207.CrossRefPubMedGoogle Scholar
  108. 108.
    Kasahara, M., Suzuki, T., & Du Pasquier, L. (2004). On the origins of the adaptive immune system: Novel insights from invertebrates and cold-blooded vertebrates. Trends in Immunology, 25, 105–111.CrossRefPubMedGoogle Scholar
  109. 109.
    Klein, J., Sato, A., & Mayer, W. E. (1999). The major histocompatibility complex: Evolution, structure and function (pp. 3–26). Tokyo: Springer.Google Scholar
  110. 110.
    Herrin, B. R., & Cooper, M. D. (2010). Alternative adaptive immunity in jawless vertebrates. The Journal of Immunology, 185, 1367–1374.CrossRefPubMedGoogle Scholar
  111. 111.
    Pancer, Z., Mayer, W. E., Klein, J., & Cooper, M. D. (2004). Prototypic T cell receptor and CD4-like coreceptor are expressed by lymphocytes in the agnathan sea lamprey. Proceedings of the National Academy of Sciences of the United States of America, 101, 13273–13278.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Pancer, Z., Saha, N. R., Kasamatsu, J., Suzuki, T., Amemiya, C. T., Kasahara, M., et al. (2005). Variable lymphocyte receptors in hagfish. Proceedings of the National Academy of Sciences of the United States of America, 102, 9224–9229.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Schatz, D. G. (2007). DNA deaminases converge on adaptive immunity. Nature Immunology, 8, 551–553.CrossRefPubMedGoogle Scholar
  114. 114.
    Perey, D. Y., Finstad, J., Pollara, B., & Good, R. A. (1968). Evolution of the immune response. VI. First and second set skin homograft rejections in primitive fishes. Laboratory Investigation, 19, 591–597.PubMedGoogle Scholar
  115. 115.
    Finstad, J., & Good, R. A. (1964). The evolution of the immune response: III. Immunologic responses in the lamprey. The Journal of Experimental Medicine, 120, 1151.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Marchalonis, J. J., & Edelman, G. M. (1968). Phylogenetic origins of antibody structure: III. Antibodies in the primary immune response of the sea lamprey, Petromyzon marinus. The Journal of Experimental Medicine, 127, 891–914.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Shintani, S., Terzic, J., Sato, A., Saraga-Babic, M., O’hUigin, C., Tichy, H., et al. (2000). Do lampreys have lymphocytes? The Spi evidence. Proceedings of the National Academy of Sciences of the United States of America, 97, 7417–7422.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Alder, M. N., Rogozin, I. B., Iyer, L. M., Glazko, G. V., Cooper, M. D., & Pancer, Z. (2005). Diversity and function of adaptive immune receptors in a jawless vertebrate. Science, 310, 1970–1973.CrossRefPubMedGoogle Scholar
  119. 119.
    Rogozin, I. B., Iyer, L. M., Liang, L., Glazko, G. V., Liston, V. G., Pavlov, Y. I., et al. (2007). Evolution and diversification of lamprey antigen receptors: Evidence for involvement of an AID-APOBEC family cytosine deaminase. Nature Immunology, 8, 647–656.CrossRefPubMedGoogle Scholar
  120. 120.
    Kishishita, N., & Nagawa, F. (2014). Evolution of adaptive immunity: Implications of a third lymphocyte lineage in lampreys. Bioessays, 36, 244–250.CrossRefPubMedGoogle Scholar
  121. 121.
    Kim, H. M., Oh, S. C., Lim, K. J., Kasamatsu, J., Heo, J. Y., Park, B. S., et al. (2007). Structural diversity of the hagfish variable lymphocyte receptors. The Journal of Biological Chemistry, 282, 6726–6732.CrossRefPubMedGoogle Scholar
  122. 122.
    Nagawa, F., Kishishita, N., Shimizu, K., Hirose, S., Miyoshi, M., Nezu, J., et al. (2007). Antigen-receptor genes of the agnathan lamprey are assembled by a process involving copy choice. Nature Immunology, 8, 206–213.CrossRefPubMedGoogle Scholar
  123. 123.
    Hirano, M., Guo, P., McCurley, N., Schorpp, M., Das, S., Boehm, T., et al. (2013). Evolutionary implications of a third lymphocyte lineage in lampreys. Nature, 501, 435–438.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Boehm, T., McCurley, N., Sutoh, Y., Schorpp, M., Kasahara, M., & Cooper, M. D. (2012). VLR-based adaptive immunity. Annual Review of Immunology, 30, 203–220.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Zhu, C., Lee, V., Finn, A., Senger, K., Zarrin, A. A., Du Pasquier, L., et al. (2012). Origin of immunoglobulin isotype switching. Current Biology, 22, 872–880.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Rast, J. P., & Litman, G. W. (1998). Towards understanding the evolutionary origins and early diversification of rearranging antigen receptors. Immunological Reviews, 166, 79–86.CrossRefPubMedGoogle Scholar
  127. 127.
    Lee, S. S., Fitch, D., Flajnik, M. F., & Hsu, E. (2000). Rearrangement of immunoglobulin genes in shark germ cells. The Journal of Experimental Medicine, 191, 1637–1648.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Eason, D. D., Cannon, J. P., Haire, R. N., Rast, J. P., Ostrov, D. A., & Litman, G. W. (2004). Mechanisms of antigen receptor evolution. Seminars in Immunology, 16(4), 215–226.CrossRefPubMedGoogle Scholar
  129. 129.
    Hinds, K. R., & Litman, G. W. (1986). Major reorganization of immunoglobulin VH segmental elements during vertebrate evolution. Nature, 320, 546–549.CrossRefPubMedGoogle Scholar
  130. 130.
    Rumfelt, L. L., McKinney, E. C., Taylor, E., & Flajnik, M. F. (2002). The development of primary and secondary lymphoid tissues in the nurse shark Ginglymostoma cirratum: B-cell zones precede dendritic cell immigration and T-cell zone formation during ontogeny of the spleen. Scandinavian Journal of Immunology, 56, 130–148.CrossRefPubMedGoogle Scholar
  131. 131.
    Van Gent, D. C., Ramsden, D. A., & Gellert, M. (1996). The RAG1 and RAG2 proteins establish the 12/23 rule in V (D) J recombination. Cell, 85, 107–113.CrossRefPubMedGoogle Scholar
  132. 132.
    Rumfelt, L. L., Avila, D., Diaz, M., Bartl, S., McKinney, E. C., & Flajnik, M. F. (2001). A shark antibody heavy chain encoded by a nonsomatically rearranged VDJ is preferentially expressed in early development and is convergent with mammalian IgG. Proceedings of the National Academy of Sciences of the United States of America, 98, 1775–1780.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Scapigliati, G. (2013). Functional aspects of fish lymphocytes. Developmental & Comparative Immunology, 41, 200–208.CrossRefGoogle Scholar
  134. 134.
    Malecek, K., Brandman, J., Brodsky, J. E., Ohta, Y., Flajnik, M. F., & Hsu, E. (2005). Somatic hypermutation and junctional diversification at Ig heavy chain loci in the nurse shark. The Journal of Immunology, 175, 8105–8115.CrossRefPubMedGoogle Scholar
  135. 135.
    Kato, L., Stanlie, A., Begum, N. A., Kobayashi, M., Aida, M., & Honjo, T. (2012). An evolutionary view of the mechanism for immune and genome diversity. The Journal of Immunology, 188, 3559–3566.CrossRefPubMedGoogle Scholar
  136. 136.
    Eason, D. D., Litman, R. T., Luer, C. A., Kerr, W., & Litman, G. W. (2004). Expression of individual immunoglobulin genes occurs in an unusual system consisting of multiple independent loci. European Journal of Immunology, 34, 2551–2558.CrossRefPubMedGoogle Scholar
  137. 137.
    Zhang, C., Du Pasquier, L., & Hsu, E. (2013). Shark IgW C region diversification through RNA processing and isotype switching. The Journal of Immunology, 191, 3410–3418.CrossRefPubMedGoogle Scholar
  138. 138.
    Ghaffari, S. H., & Lobb, C. J. (1997). Structure and genomic organization of a second class of immunoglobulin light chain genes in the channel catfish. The Journal of Immunology, 159, 250–258.PubMedGoogle Scholar
  139. 139.
    Hansen, J. D., Landis, E. D., & Phillips, R. B. (2005). Discovery of a unique Ig heavy-chain isotype (IgT) in rainbow trout: Implications for a distinctive B cell developmental pathway in teleost fish. Proceedings of the National Academy of Sciences of the United States of America, 102, 6919–6924.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Jaillon, O., Aury, J. M., Brunet, F., Petit, J. L., Stange-Thomann, N., Mauceli, E., et al. (2004). Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature, 431, 946–957.CrossRefPubMedGoogle Scholar
  141. 141.
    Hsu, E., Pulham, N., Rumfelt, L. L., & Flajnik, M. F. (2006). The plasticity of immunoglobulin gene systems in evolution. Immunological Reviews, 210, 8–26.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Bengtén, E., Clem, L. W., Miller, N. W., Warr, G. W., & Wilson, M. (2006). Channel catfish immunoglobulins: Repertoire and expression. Developmental & Comparative Immunology, 30, 77–92.CrossRefGoogle Scholar
  143. 143.
    Fillatreau, S., Six, A., Magadan, S., Castro, R., Sunyer, J. O., & Boudinot, P. (2013). The astonishing diversity of Ig classes and B cell repertoires in teleost fish. Frontiers in immunology, 4, 28.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Hikima, J. I., Jung, T. S., & Aoki, T. (2011). Immunoglobulin genes and their transcriptional control in teleosts. Developmental & Comparative Immunology, 35, 924–936.CrossRefGoogle Scholar
  145. 145.
    Vallur, A. C., Yabuki, M., Larson, E. D., & Maizels, N. (2007). AID in antibody perfection. Cellular and Molecular Life Sciences, 64, 555–565.CrossRefPubMedGoogle Scholar
  146. 146.
    Sohail, A., Klapacz, J., Samaranayake, M., Ullah, A., & Bhagwat, A. S. (2003). Human activation-induced cytidine deaminase causes transcription-dependent, strand-biased C to U deaminations. Nucleic Acids Research, 31, 2990–2994.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Pham, P., Bransteitter, R., Petruska, J., & Goodman, M. F. (2003). Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature, 424, 103–107.CrossRefPubMedGoogle Scholar
  148. 148.
    DiMenna, L. J., & Chaudhuri, J. (2016). Regulating infidelity: RNA-mediated recruitment of AID to DNA during class switch recombination. European Journal of Immunology, 46, 523–530.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Hwang, J. K., Alt, F. W., & Yeap, L. S. (2015). Related mechanisms of antibody somatic hypermutation and class switch recombination. Microbiology Spectrum, 3, 1–35.Google Scholar
  150. 150.
    Chatterji, M., Unniraman, S., McBride, K. M., & Schatz, D. G. (2007). Role of activation-induced deaminase protein kinase A phosphorylation sites in Ig gene conversion and somatic hypermutation. The Journal of Immunology, 179, 5274–5280.CrossRefPubMedGoogle Scholar
  151. 151.
    Matthews, A. J., Zheng, S., DiMenna, L. J., & Chaudhuri, J. (2014). Regulation of immunoglobulin class-switch recombination: Choreography of noncoding transcription, targeted DNA deamination, and long-range DNA repair. Advances in Immunology, 122, 1–57.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Patenaude, A. M., Orthwein, A., Hu, Y., Campo, V. A., Kavli, B., Buschiazzo, A., et al. (2009). Active nuclear import and cytoplasmic retention of activation-induced deaminase. Nature Structural & Molecular Biology, 16, 517–527.CrossRefGoogle Scholar
  153. 153.
    Pavri, R., Gazumyan, A., Jankovic, M., Di Virgilio, M., Klein, I., Ansarah-Sobrinho, C., et al. (2010). Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell, 143, 122–133.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Stavnezer, J., & Schrader, C. E. (2014). IgH chain class switch recombination: Mechanism and regulation. The Journal of Immunology, 193, 5370–5378.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Pham, P., Afif, S. A., Shimoda, M., Maeda, K., Sakaguchi, N., Pedersen, L. C., et al. (2016). Structural analysis of the activation-induced deoxycytidine deaminase required in immunoglobulin diversification. DNA Repair, 43, 48–56.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Casellas, R., Nussenzweig, A., Wuerffel, R., Pelanda, R., Reichlin, A., Suh, H., et al. (1998). Ku80 is required for immunoglobulin isotype switching. The EMBO Journal, 17, 2404–2411.CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Manis, J. P., Gu, Y., Lansford, R., Sonoda, E., Ferrini, R., Davidson, L., et al. (1998). Ku70 is required for late B cell development and immunoglobulin heavy chain class switching. The Journal of Experimental Medicine, 187, 2081–2089.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Reina-San-Martin, B., Difilippantonio, S., Hanitsch, L., Masilamani, R. F., Nussenzweig, A., & Nussenzweig, M. C. (2003). H2AX is required for recombination between immunoglobulin switch regions but not for intra-switch region recombination or somatic hypermutation. The Journal of Experimental Medicine, 197, 1767–1778.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Chandra, V., Bortnick, A., & Murre, C. (2015). AID targeting: Old mysteries and new challenges. Trends in Immunology, 36, 527–535.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    MacDuff, D. A., Neuberger, M. S., & Harris, R. S. (2006). MDM2 can interact with the C-terminus of AID but it is inessential for antibody diversification in DT40 B cells. Molecular Immunology, 43, 1099–1108.CrossRefPubMedGoogle Scholar
  161. 161.
    Chaudhuri, J., Khuong, C., & Alt, F. W. (2004). Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature, 430, 992–998.CrossRefPubMedGoogle Scholar
  162. 162.
    de Yébenes, V. G., & Ramiro, A. R. (2006). Activation-induced deaminase: Light and dark sides. Trends in Molecular Medicine, 12, 432–439.CrossRefPubMedGoogle Scholar
  163. 163.
    Basu, U., Chaudhuri, J., Alpert, C., Dutt, S., Ranganath, S., Li, G., et al. (2005). The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature, 438, 508–511.CrossRefPubMedGoogle Scholar
  164. 164.
    Basu, U., Wang, Y., & Alt, F. W. (2008). Evolution of phosphorylation-dependent regulation of activation-induced cytidine deaminase. Molecular Cell, 32, 285–291.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Basu, U., Franklin, A., & Alt, F. W. (2009). Post-translational regulation of activation-induced cytidine deaminase. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364, 667–673.CrossRefPubMedGoogle Scholar
  166. 166.
    Budzyńska, P. M., Kyläniemi, M. K., Kallonen, T., Soikkeli, A. I., Nera, K. P., Lassila, O., et al. (2017). Bach2 regulates AID-mediated immunoglobulin gene conversion and somatic hypermutation in DT40 B cells. European Journal of Immunology.  https://doi.org/10.1002/eji.201646895.CrossRefPubMedGoogle Scholar
  167. 167.
    Hu, W., Begum, N. A., Mondal, S., Stanlie, A., & Honjo, T. (2015). Identification of DNA cleavage-and recombination-specific hnRNP cofactors for activation-induced cytidine deaminase. Proceedings of the National Academy of Sciences of the United States of America, 112, 5791–5796.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Dancyger, A. M., King, J. J., Quinlan, M. J., Fifield, H., Tucker, S., Saunders, H. L., et al. (2012). Differences in the enzymatic efficiency of human and bony fish AID are mediated by a single residue in the C terminus modulating single-stranded DNA binding. The FASEB Journal, 26(4), 1517–1525.CrossRefPubMedGoogle Scholar
  169. 169.
    Villota-Herdoiza, D., Pila, E. A., Quiniou, S., Waldbieser, G. C., & Magor, B. G. (2013). Transcriptional regulation of teleost Aicda genes. Part 1—Suppressors of promiscuous promoters. Fish & Shellfish Immunology, 35(6), 1981–1987.CrossRefGoogle Scholar
  170. 170.
    Cerutti, A. (2008). The regulation of IgA class switching. Nature Reviews Immunology, 8, 421–434.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Bekeredjian-Ding, I., & Jego, G. (2009). Toll-like receptors–sentries in the B-cell response. Immunology, 128, 311–323.CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Pone, E. J., Zan, H., Zhang, J. S., Al-Qahtani, A., Xu, Z., & Casali, P. (2010). Toll-like receptors and B-cell receptors synergize to induce immunoglobulin class-switch DNA recombination: Relevance to microbial antibody responses. Critical Reviews in Immunology, 30, 1–29.CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Xu, W., Santini, P. A., Matthews, A. J., Chiu, A., Plebani, A., He, B., et al. (2008). Viral double-stranded RNA triggers Ig class switching by activating upper respiratory mucosa B cells through an innate TLR3 pathway involving BAFF. The Journal of Immunology, 181, 276–287.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Medzhitov, R., Preston-Hurlburt, P., & Janeway, C. A. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 388, 394–397.CrossRefPubMedGoogle Scholar
  175. 175.
    Rauta, P. R., Samanta, M., Dash, H. R., Nayak, B., & Das, S. (2014). Toll-like receptors (TLRs) in aquatic animals: Signaling pathways, expressions and immune responses. Immunology Letters, 158, 14–24.CrossRefPubMedGoogle Scholar
  176. 176.
    Akira, S., Uematsu, S., & Takeuchi, O. (2006). Pattern recognition and innate immunity. Cell, 124, 783–801.CrossRefPubMedGoogle Scholar
  177. 177.
    Bombardieri, M., Kam, N. W., Brentano, F., Choi, K., Filer, A., Kyburz, D., et al. (2011). A BAFF/APRIL-dependent TLR3-stimulated pathway enhances the capacity of rheumatoid synovial fibroblasts to induce AID expression and Ig class-switching in B cells. Annals of the Rheumatic Diseases, 70, 1857–1865.CrossRefPubMedGoogle Scholar
  178. 178.
    Mandler, R., Finkelman, F. D., Levine, A. D., & Snapper, C. M. (1993). IL-4 induction of IgE class switching by lipopolysaccharide-activated murine B cells occurs predominantly through sequential switching. The Journal of Immunology, 150, 407–418.PubMedGoogle Scholar
  179. 179.
    Castigli, E., Wilson, S. A., Scott, S., Dedeoglu, F., Xu, S., Lam, K. P., et al. (2005). TACI and BAFF-R mediate isotype switching in B cells. The Journal of Experimental Medicine, 201, 35–39.CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    He, B., Qiao, X., & Cerutti, A. (2004). CpG DNA induces IgG class switch DNA recombination by activating human B cells through an innate pathway that requires TLR9 and cooperates with IL-10. The Journal of Immunology, 173, 4479–4491.CrossRefPubMedGoogle Scholar
  181. 181.
    Schneider, P. (2005). The role of APRIL and BAFF in lymphocyte activation. Current Opinion in Immunology, 17, 282–289.CrossRefPubMedGoogle Scholar
  182. 182.
    Thompson, J. S., Schneider, P., Kalled, S. L., Wang, L., Lefevre, E. A., Cachero, T. G., et al. (2000). BAFF binds to the tumor necrosis factor receptor-like molecule B cell maturation antigen and is important for maintaining the peripheral B cell population. The Journal of Experimental Medicine, 192, 129–136.CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Castigli, E., Scott, S., Dedeoglu, F., Bryce, P., Jabara, H., Bhan, A. K., et al. (2004). Impaired IgA class switching in APRIL-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 101, 3903–3908.CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Day, E. S., Cachero, T. G., Qian, F., Sun, Y., Wen, D., Pelletier, M., et al. (2005). Selectivity of BAFF/BLyS and APRIL for binding to the TNF family receptors BAFFR/BR3 and BCMA. Biochemistry, 44, 1919–1931.CrossRefPubMedGoogle Scholar
  185. 185.
    Barreto, V. M., Ramiro, A. R., & Nussenzweig, M. C. (2005). Activation-induced deaminase: Controversies and open questions. Trends in Immunology, 26, 90–96.CrossRefPubMedGoogle Scholar
  186. 186.
    Moris, A., Murray, S., & Cardinaud, S. (2014). AID and APOBECs span the gap between innate and adaptive immunity. Frontiers in Microbiology, 5, 1–13.CrossRefGoogle Scholar
  187. 187.
    Abdouni, H., King, J. J., Suliman, M., Quinlan, M., Fifield, H., & Larijani, M. (2013). Zebrafish AID is capable of deaminating methylated deoxycytidines. Nucleic Acids Research, 41, 5457–5468.CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Harris, R. S., Sheehy, A. M., Craig, H. M., Malim, M. H., & Neuberger, M. S. (2003). DNA deamination: Not just a trigger for antibody diversification but also a mechanism for defense against retroviruses. Nature Immunology, 4, 641–643.CrossRefPubMedGoogle Scholar
  189. 189.
    Okazaki, I. M., Kotani, A., & Honjo, T. (2007). Role of AID in tumorigenesis. Advances in Immunology, 94, 245–273.CrossRefPubMedGoogle Scholar
  190. 190.
    Liu, M., & Schatz, D. G. (2009). Balancing AID and DNA repair during somatic hypermutation. Trends in Immunology, 30, 173–181.CrossRefPubMedGoogle Scholar
  191. 191.
    Robbiani, D. F., Bunting, S., Feldhahn, N., Bothmer, A., Camps, J., Deroubaix, S., et al. (2009). AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Molecular Cell, 36, 631–641.CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Guselnikov, S. V., Ramanayake, T., Erilova, A. Y., Mechetina, L. V., Najakshin, A. M., Robert, J., et al. (2008). The Xenopus FcR family demonstrates continually high diversification of paired receptors in vertebrate evolution. BMC Evolutionary Biology, 8, 148.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Bhakti Patel
    • 1
  • Rajanya Banerjee
    • 1
  • Mrinal Samanta
    • 2
  • Surajit Das
    • 1
  1. 1.Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life ScienceNational Institute of TechnologyRourkelaIndia
  2. 2.Immunology Laboratory, Fish Health Management DivisionICAR-Central Institute of Freshwater AquacultureKausalyaganga, BhubaneswarIndia

Personalised recommendations