Molecular Biotechnology

, Volume 60, Issue 3, pp 203–214 | Cite as

Xerophyta viscosa Aldose Reductase, XvAld1, Enhances Drought Tolerance in Transgenic Sweetpotato

  • Wilton Mbinda
  • Omwoyo Ombori
  • Christina Dixelius
  • Richard Oduor
Original Paper
  • 23 Downloads

Abstract

Sweetpotato is a significant crop which is widely cultivated particularly in the developing countries with high and stable yield. However, drought stress is a major limiting factor that antagonistically influences the crop’s productivity. Dehydration stress caused by drought causes aggregation of reactive oxygen species (ROS) in plants, and aldose reductases are first-line safeguards against ROS caused by oxidative stress. In the present study, we generated transgenic sweetpotato plants expressing aldose reductase, XvAld1 isolated from Xerophyta viscosa under the control of a stress-inducible promoter via Agrobacterium-mediated transformation. Our results demonstrated that the transgenic sweetpotato lines displayed significant enhanced tolerance to simulated drought stress and enhanced recuperation after rehydration contrasted with wild-type plants. In addition, the transgenic plants exhibited improved photosynthetic efficiency, higher water content and more proline accumulation under dehydration stress conditions compared with wild-type plants. These results demonstrate that exploiting the XvAld1 gene is not only a compelling and attainable way to improve sweetpotato tolerance to drought stresses without causing any phenotypic imperfections but also a promising gene candidate for more extensive crop improvement.

Keywords

Drought stress Genetic transformation Ipomoea batatas Reactive oxygen species Sweetpotato Xerophyta viscosa 

Notes

Acknowledgements

The authors thank Prof. Jennifer A. Thomson, University of Cape Town, South Africa, for XvAld1 gene and Prof. Christina Dixelius, Department of Plant Biology, Swedish University of Agricultural Sciences, Sweden, for providing the nptII gene. The authors acknowledge the Plant Transformation Laboratory, Department of Biochemistry and Biotechnology, Kenyatta University, Nairobi, Kenya, and the Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden, for providing the laboratory facilities. This research work was funded by National Council for Science and Technology, Kenya (Grant No. NCST/5/003/3rdSTICALL/109).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Ábrahám, E., Hourton-Cabassa, C., Erdei, L., & Szabados, L. (2010). Methods for determination of proline in plants. Plant Stress Tolerance: Methods and Protocols.  https://doi.org/10.1007/978-1-60761-702-0_20.Google Scholar
  2. 2.
    Anjum, S. A., X-y, Xie, Wang, L., Saleem, M. F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6, 2026–2032.  https://doi.org/10.5897/AJAR10.027.Google Scholar
  3. 3.
    Anwar, N., Watanabe, K. N., & Watanabe, J. A. (2011). Transgenic sweet potato expressing mammalian cytochrome P450. Plant Cell, Tissue and Organ Culture (PCTOC), 105(2), 219–231.  https://doi.org/10.1007/s11240-010-9855-9.CrossRefGoogle Scholar
  4. 4.
    Ashraf, M. P. J. C., & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1), 3–16.  https://doi.org/10.1016/j.plantsci.2003.10.024.CrossRefGoogle Scholar
  5. 5.
    Bartels, D., Engelhardt, K., Roncarati, R., Schneider, K., Rotter, M., Salamini, F. (1991). An ABA and GA modulated gene expressed in the barley embryo encodes an aldose reductase related protein. The EMBO Journal, 10, 1037–1043. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC452754/.
  6. 6.
    Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline forwater-stress studies. Plant and Soil, 39, 205–207.CrossRefGoogle Scholar
  7. 7.
    Borges, A., Rosa, M. S., Recchia, G. H., Queiroz-Silva, J. R. D., Bressan, E. D. A., & Veasey, E. A. (2009). CTAB methods for DNA extraction of sweetpotato for microsatellite analysis. Scientia Agricola, 66(4), 529–534.  https://doi.org/10.1590/S0103-90162009000400015.CrossRefGoogle Scholar
  8. 8.
    Chartzoulakis, K., Noitsakis, B., & Therios, I. (1993). Photosynthesis, plant growth and dry matter distribution in kiwifruit as influenced by water deficits. Irrigation Science, 14, 1–5.  https://doi.org/10.1016/j.foodchem.2015.12.057.CrossRefGoogle Scholar
  9. 9.
    El-Sheikha, A. F., & Ray, R. C. (2017). Potential impacts of bioprocessing of sweetpotato. Critical Reviews in Food Science and Nutrition, 57, 455–471.  https://doi.org/10.1080/10408398.2014.960909.CrossRefGoogle Scholar
  10. 10.
    Éva, C., Solti, Á., Oszvald, M., Tömösközi-Farkas, R., Nagy, B., Horváth, G. V., et al. (2016). Improved reactive aldehyde, salt and cadmium tolerance of transgenic barley due to the expression of aldo–keto reductase genes. Acta Physiologiae Plantarum, 38, 1–10.  https://doi.org/10.1007/s11738-016-2118-6.CrossRefGoogle Scholar
  11. 11.
    Fan, W., Zhang, M., Zhang, H., & Zhang, P. (2012). Improved tolerance to various abiotic stresses in transgenic sweetpotato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS ONE, 7, e37344.  https://doi.org/10.1371/journal.pone.0037344.CrossRefGoogle Scholar
  12. 12.
    FAO. (2014). FAOstat. Retrieved Feb 2014.Google Scholar
  13. 13.
    Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Ddevelopment, 29, 185–212.  https://doi.org/10.1051/agro:2008021.CrossRefGoogle Scholar
  14. 14.
    Farrant, J. M., Cooper, K., Hilgart, A., Abdalla, K. O., Bentley, J., Thomson, J. A., et al. (2015). A molecular physiological review of vegetative desiccation tolerance in the resurrection plant Xerophyta viscosa (Baker). Planta, 242, 407–426.  https://doi.org/10.1007/s00425-015-2320-6.CrossRefGoogle Scholar
  15. 15.
    Gajanayake, B., Reddy, K. R., Shankle, M. W., & Arancibia, R. A. (2014). Growth, developmental, and physiological responses of two sweetpotato (Ipomoea batatas L.[Lam]) cultivars to early season soil moisture deficit. Scientia Horticulturae, 168, 218–228.  https://doi.org/10.1016/j.scienta.2014.01.018.CrossRefGoogle Scholar
  16. 16.
    Hanson, A. D., & Burnet, M. (1994). Evolution and metabolic engineering of osmoprotectant accumulation in higher plants. In Biochemical and cellular mechanisms of stress tolerance in plants (pp. 291–302). Springer, Berlin, Heidelberg.CrossRefGoogle Scholar
  17. 17.
    Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments: A review. Plant Signaling & Behavior, 7(11), 1456–1466.  https://doi.org/10.4161/psb.21949. CrossRefGoogle Scholar
  18. 18.
    Hernandez-Santana, V., Fernández, J. E., Cuevas, M. V., Perez-Martin, A., & Diaz-Espejo, A. (2017). Photosynthetic limitations by water deficit: Effect on fruit and olive oil yield, leaf area and trunk diameter and its potential use to control vegetative growth of super-high density olive orchards. Agricultural Water Management, 184, 9–18.  https://doi.org/10.1016/j.agwat.2016.12.016.CrossRefGoogle Scholar
  19. 19.
    Islam, S. N., Nusrat, T., Begum, P., & Ahsan, M. (2016). Carotenoids and β-carotene in orange fleshed sweetpotato: A possible solution to vitamin A deficiency. Food Chemistry, 199, 628–631.CrossRefGoogle Scholar
  20. 20.
    Ji, C. Y., Jin, R., Xu, Z., Kim, H. S., Lee, C. J., Kang, L., et al. (2017). Overexpression of Arabidopsis P3B increases heat and low temperature stress tolerance in transgenic sweetpotato. BMC Plant Biology, 17(1), 139.  https://doi.org/10.1186/s12870-017-1087-2.CrossRefGoogle Scholar
  21. 21.
    Jin, R., Kim, B. H., Ji, C. Y., Kim, H. S., Li, H. M., & Kwak, S. S. (2017). Overexpressing IbCBF3 increases low temperature and drought stress tolerance in transgenic sweetpotato. Plant Physiology and Biochemistry, 118, 45–54.  https://doi.org/10.1016/j.plaphy.2017.06.002.CrossRefGoogle Scholar
  22. 22.
    Kang, L., Ji, C. Y., Kim, S. H., Ke, Q., Park, S. C., Kim, H. S., et al. (2017). Suppression of the β-carotene hydroxylase gene increases β-carotene content and tolerance to abiotic stress in transgenic sweetpotato plants. Plant Physiology and Biochemistry, 117, 24–33.  https://doi.org/10.1016/j.plaphy.2017.05.017.CrossRefGoogle Scholar
  23. 23.
    Kasukabe, Y., He, L., Watakabe, Y., Otani, M., Shimada, T., & Tachibana, S. (2006). Improvement of environmental stress tolerance of sweetpotato by introduction of genes for spermidine synthase. Plant Biotechnology, 23, 75–83.  https://doi.org/10.5511/plantbiotechnology.23.75.CrossRefGoogle Scholar
  24. 24.
    Kirankumar, T. V., Madhusudhan, K. V., Nareshkumar, A., Kiranmai, K., Lokesh, U., Venkatesh, B., et al. (2016). Expression analysis of aldo-keto reductase 1 (AKR1) in foxtail millet (Setaria italica L.) subjected to abiotic stresses. American Journal of Plant Sciences, 7, 500–509.  https://doi.org/10.4236/ajps.2016.73044.CrossRefGoogle Scholar
  25. 25.
    Kirnak, H., Kaya, C., Tas, I., Higgs, D. (2001). The influence of water deficit on vegetative growth, physiology, fruit yield and quality in eggplants. Bulgarian Journal of Plant Physiology 27, 34–46. https://pdfs.semanticscholar.org/4ece/44d950f4a74f695d3ef7c2d610c00abc1afa.pdf.
  26. 26.
    Kumar, D., Singh, P., Yusuf, M. A., Upadhyaya, C. P., Roy, S. D., Hohn, T., et al. (2013). The Xerophyta viscosa aldose reductase (ALDRXV4) confers enhanced drought and salinity tolerance to transgenic tobacco plants by scavenging methylglyoxal and reducing the membrane damage. Molecular Biotechnology, 54,(2) 292–303.  https://doi.org/10.1007/s12033-012-9567-y.CrossRefGoogle Scholar
  27. 27.
    Liu, D., He, S., Zhai, H., Wang, L., Zhao, Y., Wang, B., et al. (2014). Overexpression of IbP5CR enhances salt tolerance in transgenic sweetpotato. Plant Cell, Tissue and Organ Culture, 117, 1–16.  https://doi.org/10.1007/s11240-013-0415-y.CrossRefGoogle Scholar
  28. 28.
    Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25, 402–408.  https://doi.org/10.1006/meth.2001.1262.CrossRefGoogle Scholar
  29. 29.
    Massacci, A., Nabiev, S., Pietrosanti, L., Nematov, S., Chernikova, T., Thor, K., et al. (2008). Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiology and Biochemistry, 46, 189–195.  https://doi.org/10.1016/j.plaphy.2007.10.006.CrossRefGoogle Scholar
  30. 30.
    Mbinda, W., Anami, S., Ombori, O., Dixelius, C., & Oduor, R. (2016). Efficient plant regeneration of selected Kenyan sweetpotato (Ipomoea batatas (L.) Lam.) cultivars through somatic embryogenesis. Journal of Tissue Science and Engineering, 7, 176–182.  https://doi.org/10.4172/2157-7552.1000176.CrossRefGoogle Scholar
  31. 31.
    Musembi, K. B., Githiri, S. M., Yencho, G. C., & Sibiya, J. (2015). Combining ability and heterosis for yield and drought tolerance traits under managed drought stress in sweetpotato. Euphytica, 201, 423–440.  https://doi.org/10.1007/s10681-014-1230-1.CrossRefGoogle Scholar
  32. 32.
    Nagy, B., Majer, P., Mihály, R., Pauk, J., & Horváth, G. V. (2016). Stress tolerance of transgenic barley accumulating the alfalfa aldose reductase in the cytoplasm and the chloroplast. Phytochemistry, 129, 14–23.  https://doi.org/10.1016/j.phytochem.2016.07.007.CrossRefGoogle Scholar
  33. 33.
    Narawongsanont, R., Kabinpong, S., Auiyawong, B., & Tantitadapitak, C. (2012). Cloning and characterization of AKR4C14, a rice aldo–keto reductase, from Thai Jasmine rice. Protein Journal, 31, 35–42.  https://doi.org/10.1007/s10930-011-9371-8.CrossRefGoogle Scholar
  34. 34.
    Noctor, G., Mhamdi, A., & Foyer, C. H. (2014). The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiology, 164, 1636–1648.  https://doi.org/10.1104/pp.113.233478.CrossRefGoogle Scholar
  35. 35.
    Omae, H., Kumar, A., Kashiwaba, K., & Shono, M. (2007). Assessing drought tolerance of snap bean (Phaseolus vulgaris) from genotypic differences in leaf water relations, shoot growth and photosynthetic parameters. Plant Production Science, 10, 28–35.  https://doi.org/10.1626/pps.10.28.CrossRefGoogle Scholar
  36. 36.
    Osakabe, Y., Osakabe, K., Shinozaki, K., & Tran, L.-S. P. (2014). Response of plants to water stress. Frontiers in Plant Science, 5, 86.  https://doi.org/10.3389/fpls.2014.00086.CrossRefGoogle Scholar
  37. 37.
    Park, S. C., Kim, Y. H., Ji, C. Y., Park, S., Jeong, C. J., Lee, H. S., et al. (2012). Stable internal reference genes for the normalization of real-time PCR in different sweetpotato cultivars subjected to abiotic stress conditions. PLoS ONE, 7(12), e51502.  https://doi.org/10.1371/journal.pone.0051502.CrossRefGoogle Scholar
  38. 38.
    Rogers, H., & Munné-Bosch, S. (2016). Production and scavenging of reactive oxygen species and redox signaling during leaf and flower senescence: similar but different. Plant Physiology, 171, 1560–1568.  https://doi.org/10.1104/pp.16.00163.CrossRefGoogle Scholar
  39. 39.
    Ruijter, J., Ramakers, C., Hoogaars, W., Karlen, Y., Bakker, O., Van den Hoff, M., et al. (2009). Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Research, 37, 1–12.  https://doi.org/10.1093/nar/gkp045.CrossRefGoogle Scholar
  40. 40.
    Sah, S. K., Reddy, K. R., & Li, J. (2016). Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in Plant Science, 7, 571.  https://doi.org/10.3389/fpls.2016.00571.CrossRefGoogle Scholar
  41. 41.
    Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.Google Scholar
  42. 42.
    Santa-Maria, M. C., Yencho, C. G., Haigler, C. H., Thompson, W. F., Kelly, R. M., & Sosinski, B. (2011). Starch self-processing in transgenic sweet potato roots expressing a hyperthermophilic α-amylase. Biotechnology Progress, 27(2), 351–359.  https://doi.org/10.1002/btpr.573.CrossRefGoogle Scholar
  43. 43.
    Schafleitner, R., Tincopa, L. R., Palomino, O., Rossel, G., Robles, R. F., Alagon, R., et al. (2010). A sweetpotato gene index established by de novo assembly of pyrosequencing and Sanger sequences and mining for gene-based microsatellite markers. BMC Genomics, 11(1), 604.  https://doi.org/10.1186/1471-2164-11-604.CrossRefGoogle Scholar
  44. 44.
    Sengupta, D., Mudalkar, S., & Reddy, A. R. (2012). Detoxification potential and expression analysis of eutypine reducing aldehyde reductase (VrALR) during progressive drought and recovery in Vigna radiata (L.) Wilczek roots. Planta, 236, 1339–1349.  https://doi.org/10.1007/s00425-012-1716-9.CrossRefGoogle Scholar
  45. 45.
    Sengupta, D., Naik, D., & Reddy, A. R. (2015). Plant aldo–keto reductases (AKRs) as multi-tasking soldiers involved in diverse plant metabolic processes and stress defense: A structure-function update. Journal of Plant Physiology, 179, 40–55.  https://doi.org/10.1016/j.jplph.2015.03.004.CrossRefGoogle Scholar
  46. 46.
    Seth, M.S., Bedada, L.T., Runo, S.M., Ngugi, M.P., Iyer, R., Thomson, J.A. et al. (2016). Drought tolerance in transgenic tropical maize (Zea mays L.) by heterologous expression of peroxiredoxin2 gene-XvPrx2. African Journal of Biotechnology 15, 1350–1362. doi: https://doi.org/10.5897/ajb2016.15371. ISSN: 1684-5315.
  47. 47.
    Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany.  https://doi.org/10.1155/2012/217037.Google Scholar
  48. 48.
    Srisuwan, S., Sihachakr, D., & Siljak-Yakovlev, S. (2006). The origin and evolution of sweetpotato (Ipomoea batatas Lam.) and its wild relatives through the cytogenetic approaches. Plant Science, 171, 424–433.  https://doi.org/10.1016/j.plantsci.2006.05.007.CrossRefGoogle Scholar
  49. 49.
    Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15, 89–97.  https://doi.org/10.1016/j.tplants.2009.11.009.CrossRefGoogle Scholar
  50. 50.
    Todd, S.M., Truong, V.-D., Pecota, K.V., Yencho, G.C. (2015). Combining ability of sweetpotato germplasm for yield, dry matter content, and anthocyanin production. Journal of the American Society for Horticulture Science 140, 272–279. https://www.researchgate.net/publication/281993585.
  51. 51.
    Turner, N. C. (1981). Techniques and experimental approaches for the measurement of plant water status. Plant and Soil, 58(1–3), 339–366.CrossRefGoogle Scholar
  52. 52.
    Wang, B., Zhai, H., He, S., Zhang, H., Ren, Z., Zhang, D., et al. (2016). A vacuolar Na+/H+ antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweetpotato. Scientia Horticulturae, 201, 153–166.  https://doi.org/10.1016/j.scienta.2016.01.027.CrossRefGoogle Scholar
  53. 53.
    Weigel, D., & Glazebrook, J. (2006). Transformation of Agrobacterium using the freeze-thaw method. Cold Spring Harbor Protocols.  https://doi.org/10.1101/pdb.prot4666.Google Scholar
  54. 54.
    Yooyongwech, S., Samphumphuang, T., Tisarum, R., Theerawitaya, C., & Cha-um, S. (2017). Water-deficit tolerance in sweetpotato [Ipomoea batatas (L.) Lam.] by foliar application of paclobutrazol: Role of soluble sugar and free proline. Frontiers in Plant Science, 8, 1400.  https://doi.org/10.3389/fpls.2017.01400.CrossRefGoogle Scholar
  55. 55.
    Yooyongwech, S., Theerawitaya, C., Samphumphuang, T., & Cha-um, S. (2013). Water-deficit tolerant identification in sweetpotato genotypes (Ipomoea batatas (L.) Lam.) in vegetative developmental stage using multivariate physiological indices. Scientia Horticulturae, 162, 242–251.  https://doi.org/10.1016/j.scienta.2013.07.041.CrossRefGoogle Scholar
  56. 56.
    Zhai, H., Wang, F., Si, Z., Huo, J., Xing, L., An, Y., et al. (2016). A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweetpotato. Plant Biotechnology Journal, 14(2), 592–602.  https://doi.org/10.1111/pbi.12402.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wilton Mbinda
    • 1
    • 2
  • Omwoyo Ombori
    • 3
  • Christina Dixelius
    • 4
  • Richard Oduor
    • 2
  1. 1.Department of Biochemistry and BiotechnologyPwani UniversityKilifiKenya
  2. 2.Department of Biochemistry and BiotechnologyKenyatta UniversityNairobiKenya
  3. 3.Department of Plant SciencesKenyatta UniversityNairobiKenya
  4. 4.Department of Plant BiologySwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations