Skip to main content
Log in

CRISPR/Cas9-Mediated Multiply Targeted Mutagenesis in Orange and Purple Carrot Plants

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) system has been successfully used for precise genome editing in many plant species, including in carrot cells, very recently. However, no stable gene-editing carrot plants were obtained with CRISPR/Cas9 system to date. In the present study, four sgRNA expression cassettes, individually driven by four different promoters and assembled in a single CRISPR/Cas9 vector, were transformed into carrots using Agrobacterium-mediated genetic transformation. Four sites of DcPDS and DcMYB113-like genes were chosen as targets. Knockout of DcPDS in orange carrot ‘Kurodagosun’ resulted in the generation of albino carrot plantlets, with about 35.3% editing efficiency. DcMYB113-like was also successfully edited in purple carrot ‘Deep purple’, resulting in purple depigmented carrot plants, with about 36.4% rate of mutation. Sequencing analyses showed that insertion, deletion, and substitution occurred in the target sites, generating heterozygous, biallelic, and chimeric mutations. The highest efficiency of mutagenesis was observed in the sites targeted by AtU6-29-driven sgRNAs in both DcPDS- and DcMYB113-like-knockout T0 plants, which always induced double-strand breaks in the target sites. Our results proved that CRISPR/Cas9 system could be for generating stable gene-editing carrot plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vogel, G. (2005). How does a single somatic cell become a whole plant? Science, 309, 86.

    Article  CAS  PubMed  Google Scholar 

  2. Kammerer, D., Carle, R., & Schieber, A. (2004). Quantification of anthocyanins in black carrot extracts (Daucus carota ssp. sativus var. atrorubens Alef.) and evaluation of their color properties. European Food Research and Technology, 219, 479–486.

    Article  CAS  Google Scholar 

  3. Krinsky, N. I., & Johnson, E. J. (2005). Carotenoid actions and their relation to health and disease. Molecular Aspects of Medicine, 26, 459–516.

    Article  CAS  PubMed  Google Scholar 

  4. Clotault, J., Peltier, D., Berruyer, R., Thomas, M., Briard, M., & Geoffriau, E. (2008). Expression of carotenoid biosynthesis genes during carrot root development. Journal of Experimental Botany, 59, 3563–3573.

    Article  CAS  PubMed  Google Scholar 

  5. Montilla, E. C., Arzaba, M. R., Hillebrand, S., & Winterhalter, P. (2011). Anthocyanin composition of black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) cultivars Antonina, Beta Sweet, Deep Purple, and Purple Haze. J. Agric. Food. Chem., 59, 3385–3390.

    Article  CAS  PubMed  Google Scholar 

  6. Xu, Z. S., Tan, H. W., Wang, F., Hou, X. L., & Xiong, A. S. (2014) CarrotDB: A genomic and transcriptomic database for carrot. Database (Oxford), 2014, 1229–1245.

    Article  CAS  Google Scholar 

  7. Iorizzo, M., Ellison, S., Senalik, D., Zeng, P., Satapoomin, P., Huang, J., Bowman, M., Iovene, M., Sanseverino, W., Cavagnaro, P., Yildiz, M., Macko-Podgorni, A., Moranska, E., Grzebelus, E., Grzebelus, D., Ashrafi, H., Zheng, Z., Cheng, S., Spooner, D., Van Deynze, A., & Simon, P. (2016). A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nature Genetics, 48, 657–666.

    Article  CAS  PubMed  Google Scholar 

  8. Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., & Gregory, P. D. (2010). Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics, 11, 636–646.

    Article  CAS  PubMed  Google Scholar 

  9. Joung, J. K., & Sander, J. D. (2013). TALENs: A widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology., 14, 49–55.

    Article  CAS  PubMed  Google Scholar 

  10. Pennisi, E. (2013). The CRISPR craze. Science, 341, 833–836.

    Article  CAS  PubMed  Google Scholar 

  11. Johnson, R. D., & Jasin, M. (2001). Double-strand-break-induced homologous recombination in mammalian cells. Biochemical Society Transactions, 29, 196–201.

    Article  CAS  PubMed  Google Scholar 

  12. Sonoda, E., Hochegger, H., Saberi, A., Taniguchi, Y., & Takeda, S. (2006). Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair, 5, 1021–1029.

    Article  CAS  PubMed  Google Scholar 

  13. Feng, Z. Y., Zhang, B. T., Ding, W. N., Liu, X. D., Yang, D. L., Wei, P. L., Cao, F. Q., Zhu, S. H., Zhang, F., Mao, Y. F., & Zhu, J. K. (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 23, 1229–1232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, J. F., Norville, J. E., Aach, J., McCormack, M., Zhang, D. D., Bush, J., Church, G. M., & Sheen, J. (2013). Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 31, 688–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J. D. G., & Kamoun, S. (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology, 31, 691–693.

    Article  CAS  PubMed  Google Scholar 

  16. Miao, J., Guo, D. S., Zhang, J. Z., Huang, Q. P., Qin, G. J., Zhang, X., Wan, J. M., Gu, H. Y., & Qu, L. J. (2013). Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research, 23, 1233–1236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tang, X., Lowder, L. G., Zhang, T., Malzahn, A. A., Zheng, X., Voytas, D. F., Zhong, Z., Chen, Y., Ren, Q., Li, Q., Kirkland, E. R., Zhang, Y., & Qi, Y. (2017). A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nature Plants, 3, 17108.

    Article  Google Scholar 

  18. Wang, M., Mao, Y., Lu, Y., Tao, X., & Zhu, J. K. (2017). Multiplex gene editing in rice using the CRISPR-Cpf1 System. Molecular Plant, 10, 1011–1013.

    Article  CAS  PubMed  Google Scholar 

  19. Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J. J., Qiu, J. L., & Gao, C. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 31, 686–688.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Y. P., Cheng, X., Shan, Q. W., Zhang, Y., Liu, J. X., Gao, C. X., & Qiu, J. L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32, 947–951.

    Article  CAS  PubMed  Google Scholar 

  21. Liang, Z., Zhang, K., Chen, K. L., & Gao, C. X. (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics, 41, 63–68.

    Article  CAS  PubMed  Google Scholar 

  22. Char, S. N., Neelakandan, A. K., Nahampun, H., Frame, B., Main, M., Spalding, M. H., Becraft, P. W., Meyers, B. C., Walbot, V., Wang, K., & Yang, B. (2017). An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnology Journal, 15, 257–268.

    Article  CAS  PubMed  Google Scholar 

  23. Jacobs, T. B., LaFayette, P. R., Schmitz, R. J., & Parrott, W. A. (2015). Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnology, 15, 1–10.

    Article  CAS  Google Scholar 

  24. Li, Z. S., Liu, Z. B., Xing, A. Q., Moon, B. P., Koellhoffer, J. P., Huang, L. X., Ward, R. T., Clifton, E., Falco, S. C., & Cigan, A. M. (2015). Cas9-guide RNA directed genome editing in soybean. Plant Physiology, 169, 960–970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, S. H., Zhang, S. B., Wang, W. X., Xiong, X. Y., Meng, F. R., & Cui, X. (2015). Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Reports, 34, 1473–1476.

    Article  CAS  PubMed  Google Scholar 

  26. Jiang, W. Z., Zhou, H. B., Bi, H. H., Fromm, M., Yang, B., & Weeks, D. P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 41, e188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, C., Unver, T., & Zhang, B. H. (2017). A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in Cotton (Gossypium hirsutum L.). Scientific Reports, 7, 43902.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Brooks, C., Nekrasov, V., Lippman, Z. B., & Van Eck, J. (2014). Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiology, 166, 1292–1297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pan, C. T., Ye, L., Qin, L., Liu, X., He, Y. J., Wang, J., Chen, L. F., & Lu, G. (2016). CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Scientific Reports, 6, 46916.

    Google Scholar 

  30. Jia, H. G., & Wang, N. (2014). Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE, 9, e93806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nishitani, C., Hirai, N., Komori, S., Wada, M., Okada, K., Osakabe, K., Yamamoto, T., & Osakabe, Y. (2016). Efficient genome editing in apple using a CRISPR/Cas9 system. Scientific Reports, 6, 31481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nakajima, I., Ban, Y., Azuma, A., Onoue, N., Moriguchi, T., Yamamoto, T., Toki, S., & Endo, M. (2017). CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS ONE, 12, e0177966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fan, D., Liu, T. T., Li, C. F., Jiao, B., Li, S., Hou, Y. S., & Luo, K. M. (2015). Efficient CRISPR/Cas9-mediated targeted mutagenesis in populus in the first generation. Scientific Reports, 5, 12217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oleszkiewicz, M. Klimek-Chodacka,T., Lowder, L. G., Qi, Y., & Baranski, R. (2018). Efficient CRISPR/Cas9-based genome editing in carrot cells. Plant Cell Reports, 37, 575–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Qin, G. J., Gu, H. Y., Ma, L. G., Peng, Y. B., Deng, X. W., Chen, Z. L., & Qu, L. J. (2007). Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Research, 17, 471–482.

    Article  CAS  PubMed  Google Scholar 

  36. Li, S. N., Wang, W. Y., Gao, J. L., Yin, K. Q., Wang, R., Wang, C. C., Petersen, M., Mundy, J., & Qiu, J. L. (2016). MYB75 phosphorylation by MPK4 Is required for light-induced anthocyanin accumulation in Arabidopsis. The Plant Cell, 28, 2866–2883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R., Wang, B., Yang, Z., Li, H., Lin, Y., Xie, Y., Shen, R., Chen, S., Wang, Z., Guo, J., Chen, L., Zhao, X., Dong, Z., & Liu, Y. G. (2015). A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant, 8, 1274–1284.

    Article  CAS  PubMed  Google Scholar 

  38. Wang, F., Wang, G. L., Hou, X. L., Li, M. Y., Xu, Z. S., & Xiong, A. S. (2018). The genome sequence of ‘Kurodagosun’, a major carrot variety in Japan and China, reveals insights into biological research and carrot breeding. Molecular Genetics and Genomics, 293, 861–871.

    Article  CAS  PubMed  Google Scholar 

  39. Hardegger, M., & Sturm, A. (1998). Transformation and regeneration of carrot (Daucus carota L.). Molecular Breeding, 4, 119–127.

    Article  CAS  Google Scholar 

  40. Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50, 151–158.

    Article  CAS  PubMed  Google Scholar 

  41. Chen, W. P., & Punja, Z. K. (2002). Transgenic herbicide- and disease-tolerant carrot (Daucus carota L.) plants obtained through Agrobacterium-mediated transformation. Plant Cell Reports, 20, 929–935.

    Article  CAS  Google Scholar 

  42. Liu, W., Xie, X., Ma, X., Li, J., Chen, J., & Liu, Y. G. (2015). DSDecode: A web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations. Molecular Plant, 8, 1431–1433.

    Article  CAS  PubMed  Google Scholar 

  43. Kim, H., Kim, S. T., Ryu, J., Choi, M. K., Kweon, J., Kang, B. C., Ahn, H. M., Bae, S., Kim, J., Kim, J. S., & Kim, S. G. (2016). A simple, flexible and high-throughput cloning system for plant genome editing via CRISPR-Cas system. Journal of Integrative Plant Biology, 58, 705–712.

    Article  CAS  PubMed  Google Scholar 

  44. Cermak, T., Baltes, N. J., Cegan, R., Zhang, Y., & Voytas, D. F. (2015) High-frequency, precise modification of the tomato genome. Genome Biology, 16, 232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gil-Humanes, J., Wang, Y. P., Liang, Z., Shan, Q. W., Ozuna, C. V., Sanchez-Leon, S., Baltes, N. J., Starker, C., Barro, F., Gao, C., & Voytas, D. F. (2017). High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. The Plant Journal, 89, 1251–1262.

    Article  CAS  PubMed  Google Scholar 

  46. Liang, G., Zhang, H. M., Lou, D. J., & Yu, D. Q. (2016) Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing. Scientific Reports-UK, 6, 21451.

    Article  CAS  Google Scholar 

  47. Ye, M., Peng, Z., Tang, D., Yang, Z., Li, D., Xu, Y., Zhang, C., & Huang, S. (2018) Generation of self-compatible diploid potato by knockout of S-RNase. Nature Plants, 4, 651

    Article  CAS  PubMed  Google Scholar 

  48. Clasen, B. M., Stoddard, T. J., Luo, S., Demorest, Z. L., Li, J., Cedrone, F., Tibebu, R., Davison, S., Ray, E. E., Daulhac, A., Coffman, A., Yabandith, A., Retterath, A., Haun, W., Baltes, N. J., Mathis, L., Voytas, D. F., & Zhang, F. (2016). Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnology Journal, 14, 169–176.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Yao-Guang Liu (South China Agriculture University, Guangzhou, China) for providing the plant binary vector pYLCRISPR/Cas9 and the sgRNA plasmids. The research was supported by the National Natural Science Foundation of China (Grant Nos. 31501775; 31872098), Open Project of State Key Laboratory of Crop Genetics and Germplasm Enhancement (Grant No. ZW201710) and Priority Academic Program Development of Jiangsu Higher Education Institutions (Grant No. PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Sheng Xiong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 34 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, ZS., Feng, K. & Xiong, AS. CRISPR/Cas9-Mediated Multiply Targeted Mutagenesis in Orange and Purple Carrot Plants. Mol Biotechnol 61, 191–199 (2019). https://doi.org/10.1007/s12033-018-00150-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-018-00150-6

Keywords

Navigation