Combined crizotinib and endocrine drugs inhibit proliferation, migration, and colony formation of breast cancer cells via downregulation of MET and estrogen receptor


Hormone-dependent breast cancer is the most abundant molecular subtype of the disease. Despite the availability of endocrine treatments, the use of these drugs is limited by their serious adverse reactions and development of acquired resistance often mediated by growth factor receptors. The hepatocyte growth factor receptor, MET, is a receptor tyrosine kinase known for its oncogenic activity and mediating resistance to targeted therapies. Crizotinib is a small-molecule tyrosine kinase inhibitor of MET. In this study, the anticancer effects of combined crizotinib and endocrine drugs were investigated in breast cancer cells in vitro along with the molecular mechanisms associated with these effects. Results showed that crizotinib inhibited growth of MCF7 and T-47D breast cancer cells in a dose-dependent manner with IC50 values of 2.88 μM and 0.93 μM, respectively. Combined treatment of crizotinib and 4-hydroxytamoxifen resulted in synergistic growth inhibition of MCF7 and T-47D cells with combination index values of 0.39 and 0.8, respectively. The combined treatment significantly suppressed migration and colony formation of MCF7 and T-47D cells. Immunofluorescence showed a significant reduction of the expression of the nuclear protein Ki-67 with the combination of crizotinib and 4-hydroxytamoxifen in both cell lines. Western blotting indicated that the combination treatment reduced the levels of active and total MET, estrogen receptor α (ERα), total and active levels of AKT, ERK, c-SRC, NFĸB p65, GSK-3β, and the anti-apoptotic BCL-2 protein. Findings from this study suggest a potential role of MET inhibitors in breast cancer treatment as monotherapy or combination with endocrine drugs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Dai X, Li T, Bai Z, Yang Y, Liu X, Zhan J, et al. Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res. 2015;5(10):2929–43.

    PubMed  PubMed Central  CAS  Google Scholar 

  3. 3.

    Badowska-Kozakiewicz AM, Patera J, Sobol M, Przybylski J. The role of oestrogen and progesterone receptors in breast cancer – immunohistochemical evaluation of oestrogen and progesterone receptor expression in invasive breast cancer in women. Contemp Oncol (Pozn). 2015;19(3):220–5.

    CAS  Google Scholar 

  4. 4.

    Munzone E, Colleoni M. Optimal management of luminal breast cancer: how much endocrine therapy is long enough? Ther Adv Med Oncol. 2018;10:1758835918777437.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Patel HK, Bihani T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol Ther. 2018;186:1–24.

    PubMed  CAS  Google Scholar 

  6. 6.

    Zhang Y, Xia M, Jin K, Wang S, Wei H, Fan C, et al. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer. 2018;17(1):45.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Demkova L, Kucerova L. Role of the HGF/c-MET tyrosine kinase inhibitors in metastasic melanoma. Mol Cancer. 2018;17(1):26.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Garcia-Vilas JA, Medina MA. Updates on the hepatocyte growth factor/c-Met axis in hepatocellular carcinoma and its therapeutic implications. World J Gastroenterol. 2018;24(33):3695–708.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. 9.

    Zhao X, Qu J, Hui Y, Zhang H, Sun Y, Liu X, et al. Clinicopathological and prognostic significance of c-Met overexpression in breast cancer. Oncotarget. 2017;8(34):56758–67.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Yan S, Jiao X, Zou H, Li K. Prognostic significance of c-Met in breast cancer: a meta-analysis of 6010 cases. Diagn Pathol. 2015;10:62.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    de Melo Gagliato D, Jardim DL, Falchook G, Tang C, Zinner R, Wheler JJ, et al. Analysis of MET genetic aberrations in patients with breast cancer at MD Anderson Phase I unit. Clin Breast Cancer. 2014;14(6):468–74.

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Sahu A, Prabhash K, Noronha V, Joshi A, Desai S. Crizotinib: a comprehensive review. South Asian J Cancer. 2013;2(2):91–7.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Kazandjian D, Blumenthal GM, Chen HY, He K, Patel M, Justice R, et al. FDA approval summary: crizotinib for the treatment of metastatic non-small cell lung cancer with anaplastic lymphoma kinase rearrangements. Oncologist. 2014;19(10):e5–11.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Ayoub NM, Al-Shami KM, Alqudah MA, Mhaidat NM. Crizotinib, a MET inhibitor, inhibits growth, migration, and invasion of breast cancer cells in vitro and synergizes with chemotherapeutic agents. Onco Targets Ther. 2017;10:4869–83.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Osborne CK, Shou J, Massarweh S, Schiff R. Crosstalk between estrogen receptor and growth factor receptor pathways as a cause for endocrine therapy resistance in breast cancer. Clin Cancer Res. 2005;11(2 Pt 2):865s–70s.

    PubMed  CAS  Google Scholar 

  16. 16.

    Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res. 2011;13(4):215.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    MR RTL, Niles AL, et al. Cell viability assays. In: Sittampalam GS, Coussens NP, Nelson H, et al., editors. Assay guidance manual. Bethesda: Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004.

    Google Scholar 

  18. 18.

    Justus CR, Leffler N, Ruiz-Echevarria M, Yang LV. In vitro cell migration and invasion assays. J Vis Exp. 2014;88

  19. 19.

    Siragusa M, Dall’Olio S, Fredericia PM, Jensen M, Groesser T. Cell colony counter called CoCoNut. PLoS One. 2018;13(11):e0205823.

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Huang L, Cai M, Zhang X, Wang F, Chen L, Xu M, et al. Combinational therapy of crizotinib and afatinib for malignant pleural mesothelioma. Am J Cancer Res. 2017;7(2):203–17.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. 21.

    Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58(3):621–81.

    PubMed  CAS  Google Scholar 

  22. 22.

    Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70(2):440–6.

    PubMed  CAS  Google Scholar 

  23. 23.

    Tallarida RJ. Drug synergism: its detection and applications. J Pharmacol Exp Ther. 2001;298(3):865–72.

    PubMed  CAS  Google Scholar 

  24. 24.

    Li LT, Jiang G, Chen Q, Zheng JN. Ki67 is a promising molecular target in the diagnosis of cancer (review). Mol Med Rep. 2015;11(3):1566–72.

    PubMed  CAS  Google Scholar 

  25. 25.

    Xu Y, Chen M, Liu C, Zhang X, Li W, Cheng H, et al. Association study confirmed three breast Cancer-specific molecular subtype-associated susceptibility loci in Chinese Han women. Oncologist. 2017;22(8):890–4.

    PubMed  PubMed Central  CAS  Google Scholar 

  26. 26.

    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.

    PubMed  CAS  Google Scholar 

  27. 27.

    Nicholson RI, Johnston SR. Endocrine therapy–current benefits and limitations. Breast Cancer Res Treat. 2005;93(Suppl 1):S3–10.

    PubMed  CAS  Google Scholar 

  28. 28.

    Klein DJ, Thorn CF, Desta Z, Flockhart DA, Altman RB, Klein TE. PharmGKB summary: tamoxifen pathway, pharmacokinetics. Pharmacogenet Genomics. 2013;23(11):643–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. 29.

    Lee CI, Goodwin A, Wilcken N. Fulvestrant for hormone-sensitive metastatic breast cancer. Cochrane Database Syst Rev. 2017;1:CD011093.

    PubMed  Google Scholar 

  30. 30.

    Chen R, Guo S, Yang C, Sun L, Zong B, Li K, et al. Although cMYC contributes to tamoxifen resistance, it improves cisplatin sensitivity in ERpositive breast cancer. Int J Oncol. 2020;56(4):932–44.

    PubMed  PubMed Central  CAS  Google Scholar 

  31. 31.

    Raghav K, Bailey AM, Loree JM, Kopetz S, Holla V, Yap TA, et al. Untying the gordion knot of targeting MET in cancer. Cancer Treat Rev. 2018;66:95–103.

    PubMed  CAS  Google Scholar 

  32. 32.

    Mo HN, Liu P. Targeting MET in cancer therapy. Chronic Dis Transl Med. 2017;3(3):148–53.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Hiscox S, Jordan NJ, Jiang W, Harper M, McClelland R, Smith C, et al. Chronic exposure to fulvestrant promotes overexpression of the c-Met receptor in breast cancer cells: implications for tumour-stroma interactions. Endocr Relat Cancer. 2006;13(4):1085–99.

    PubMed  CAS  Google Scholar 

  34. 34.

    Basak P, Chatterjee S, Bhat V, Su A, Jin H, Lee-Wing V, et al. Long non-coding RNA H19 acts as an estrogen receptor modulator that is required for endocrine therapy resistance in ER+ breast Cancer cells. Cell Physiol Biochem. 2018;51(4):1518–32.

    PubMed  CAS  Google Scholar 

  35. 35.

    McClaine RJ, Marshall AM, Wagh PK, Waltz SE. Ron receptor tyrosine kinase activation confers resistance to tamoxifen in breast cancer cell lines. Neoplasia. 2010;12(8):650–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. 36.

    Rothenstein JM, Letarte N. Managing treatment-related adverse events associated with Alk inhibitors. Curr Oncol. 2014;21(1):19–26.

    PubMed  PubMed Central  CAS  Google Scholar 

  37. 37.

    Xiang C, Chen J, Fu P. HGF/met signaling in cancer invasion: the impact on cytoskeleton remodeling. Cancers (Basel). 2017;9(5)

  38. 38.

    Megiorni F, McDowell HP, Camero S, Mannarino O, Ceccarelli S, Paiano M, et al. Crizotinib-induced antitumour activity in human alveolar rhabdomyosarcoma cells is not solely dependent on ALK and MET inhibition. J Exp Clin Cancer Res. 2015;34:112.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Nair A, Chung HC, Sun T, Tyagi S, Dobrolecki LE, Dominguez-Vidana R, et al. Combinatorial inhibition of PTPN12-regulated receptors leads to a broadly effective therapeutic strategy in triple-negative breast cancer. Nat Med. 2018;24(4):505–11.

    PubMed  PubMed Central  CAS  Google Scholar 

  40. 40.

    Nehoff H, Parayath NN, McConnell MJ, Taurin S, Greish K. A combination of tyrosine kinase inhibitors, crizotinib and dasatinib for the treatment of glioblastoma multiforme. Oncotarget. 2015;6(35):37948–64.

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Xu W, Kim JW, Jung WJ, Koh Y, Yoon SS. Crizotinib in combination with everolimus synergistically inhibits proliferation of anaplastic lymphoma kinase positive anaplastic large cell lymphoma. Cancer Res Treat. 2018;50(2):599–613.

    PubMed  CAS  Google Scholar 

  42. 42.

    Zheng X, He K, Zhang L, Yu J. Crizotinib induces PUMA-dependent apoptosis in colon cancer cells. Mol Cancer Ther. 2013;12(5):777–86.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. 43.

    Ariyawutyakorn W, Saichaemchan S, Varella-Garcia M. Understanding and targeting MET signaling in solid tumors - are we there yet? J Cancer. 2016;7(6):633–49.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. 44.

    Chakraborty S, Balan M, Flynn E, Zurakowski D, Choueiri TK, Pal S. Activation of c-Met in cancer cells mediates growth-promoting signals against oxidative stress through Nrf2-HO-1. Oncogenesis. 2019;8(2):7.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. 45.

    Hamedani FS, Cinar M, Mo Z, Cervania MA, Amin HM, Alkan S. Crizotinib (PF-2341066) induces apoptosis due to downregulation of pSTAT3 and BCL-2 family proteins in NPM-ALK(+) anaplastic large cell lymphoma. Leuk Res. 2014;38(4):503–8.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references


This work was supported by a grant from the Deanship of Research at Jordan University of Science and Technology (JUST) [grant number 20180279].

Author information



Corresponding author

Correspondence to Nehad M. Ayoub.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ayoub, N.M., Alkhalifa, A.E., Ibrahim, D.R. et al. Combined crizotinib and endocrine drugs inhibit proliferation, migration, and colony formation of breast cancer cells via downregulation of MET and estrogen receptor. Med Oncol 38, 8 (2021).

Download citation


  • Breast cancer
  • Crizotinib
  • MET
  • Estrogen receptor
  • Tamoxifen
  • Synergism