Skip to main content
Log in

Hypofractionated stereotactic radiotherapy for oligometastatic patients: developing of a response predictive model

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Objectives

Treatment of oligometastatic patients is a current challenge in radiation oncology. Aim of this study is to define a dose–response relationship for hypofractionated radiotherapy of oligometastases.

Methods

Retrospective analysis of metastases treated by hypofractionated stereotactic radiotherapy was performed. Delivered dose was calculated both as biological effective dose (BED10), and as ratio between BED10 and the logarithm of metastasis volume (BED10 logVolume Ratio, BVR). Two dose–response models were defined by logistic regression. The fitted outcome was the Metastases Complete Response (MCR). Performances of the models were assessed by area under the receiver operating curve (AUC) and by bootstrap calibration of original data. BED10 and BVR impact on survival outcomes has been evaluated.

Results

Fifty-three patients with 79 metastases were analyzed. AUC and calibration of BVR-based logistic model showed better accuracy in predicting MCR with respect to BED10-based model. No significant difference between the two ROCs was observed (De Long test p value > 0.05), but significant discordance in calibration resulted in the BED10 model (p value < 0.05 in Hosmer–Lemeshow Goodness of fit test). BVR returned also better results in multivariate analyses for survival outcomes.

Conclusions

The ratio between BED10 and the logarithm of metastasis volume (BVR), as a corrective factor for fitting the probability of metastases response to stereotactic radiotherapy, could be a tool for evaluating and prescribing treatments for oligometastatic disease. BVR can be useful for producing more reliable survival statistics too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Weichselbaum RR, Hellman S. Oligometastases revisited. Nat Rev Clin Oncol. 2011;8:378–82.

    Article  CAS  Google Scholar 

  2. Timmerman RD, Bizekis CS, Pass HI, Fong Y, Dupuy DE, Dawson L, et al. Local surgical, ablative, and radiation treatment of metastases. CA Cancer J Clin. 2009;59:145–70.

    Article  Google Scholar 

  3. Hellman S, Weichselbaum RR. Oligometastases. J Clin Oncol. 1995;13:8–10.

    Article  CAS  Google Scholar 

  4. Mehta N, Mauer AM, Hellman S, Haraf DJ, Cohen EEW, Vokes EE, et al. Analysis of further disease progression in metastatic non-small cell lung cancer: implications for locoregional treatment. Int J Oncol. 2004;25:1677–83.

    PubMed  Google Scholar 

  5. Hellman S, Weichselbaum RR. Importance of local control in an era of systemic therapy. Nat Clin Pract Oncol. 2005;2:60–71.

    Article  Google Scholar 

  6. Milano MT, Katz AW, Muhs AG, Philip A, Buchholz DJ, Schell MC, et al. A prospective pilot study of curative-intent stereotactic body radiation therapy in patients with 5 or fewer oligometastatic lesions. Cancer. 2008;112:650–8.

    Article  Google Scholar 

  7. Milano MT, Katz AW, Schell MC, Philip A, Okunieff P. Descriptive analysis of oligometastatic lesions treated with curative-intent stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2008;72:1516–22.

    Article  Google Scholar 

  8. Milano MT, Philip A, Okunieff P. Analysis of patients with oligometastases undergoing two or more curative-intent stereotactic radiotherapy courses. Int J Radiat Oncol Biol Phys. 2009;73:832–7.

    Article  Google Scholar 

  9. Katz AW, Carey-Sampson M, Muhs AG, Milano MT, Schell MC, Okunieff P. Hypofractionated stereotactic body radiation therapy (SBRT) for limited hepatic metastases. Int J Radiat Oncol. 2007;67:793–8.

    Article  Google Scholar 

  10. Norihisa Y, Nagata Y, Takayama K, Matsuo Y, Sakamoto T, Sakamoto M, et al. Stereotactic Body Radiotherapy for Oligometastatic Lung Tumors. Int J Radiat Oncol Biol Phys. 2008;72:398–403.

    Article  Google Scholar 

  11. Thames HD, Withers HR, Peters LJ, Fletcher GH. Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. Int J Radiat Oncol Biol Phys. 1982;8:219–26.

    Article  Google Scholar 

  12. Wulf J, Baier K, Mueller G, Flentje MP. Dose-response in stereotactic irradiation of lung tumors. Radiother Oncol. 2005;77:83–7.

    Article  Google Scholar 

  13. Wulf J, Haedinger U, Oppitz U, Thiele W, Mueller G, Flentje M. Stereotactic radiotherapy for primary lung cancer and pulmonary metastases: a noninvasive treatment approach in medically inoperable patients. Int J Radiat Oncol Biol Phys. 2004;60:186–96.

    Article  Google Scholar 

  14. Wulf J, Guckenberger M, Haedinger U, Oppitz U, Mueller G, Baier K, et al. Stereotactic radiotherapy of primary liver cancer and hepatic metastases. Acta Oncol (Madr). 2006;45:838–47.

    Article  Google Scholar 

  15. Koshy M, Malik R, Weichselbaum RR, Sher DJ. Increasing radiation therapy dose is associated with improved survival in patients undergoing stereotactic body radiation therapy for stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2015;91:344–50.

    Article  Google Scholar 

  16. McCammon R, Schefter TE, Gaspar LE, Zaemisch R, Gravdahl D, Kavanagh B. Observation of a Dose-Control Relationship for Lung and Liver Tumors After Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys. 2009;73:112–8.

    Article  Google Scholar 

  17. Greco C, Zelefsky MJ, Lovelock M, Fuks Z, Hunt M, Rosenzweig K, et al. Predictors of local control after single-dose stereotactic image-guided intensity-modulated radiotherapy for extracranial metastases. Int J Radiat Oncol. 2011;79:1151–7.

    Article  Google Scholar 

  18. Shiau CY, Sneed PK, Shu HKG, Lamborn KR, McDermott MW, Chang S, et al. Radiosurgery for brain metastases: Relationship of dose and pattern of enhancement to local control. Int J Radiat Oncol Biol Phys. 1997;37:375–83.

    Article  CAS  Google Scholar 

  19. de Azevedo Santos T, Tundisi C, Ramos H, Maia M, Pellizzon A, Silva M, et al. Local control after radiosurgery for brain metastases: predictive factors and implications for clinical decision. Radiat Oncol. 2015;10:63.

    Article  Google Scholar 

  20. ICRU. ICRU 83: 3. Special Considerations Regarding Absorbed-Dose and Dose-Volume Prescribing and Reporting in IMRT. J ICRU. 2010;10:27–40.

    Google Scholar 

  21. Park C, Papiez L, Zhang S, Story M, Timmerman RD. Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70:847–52.

    Article  Google Scholar 

  22. Guckenberger M, Wulf J, Mueller G, Krieger T, Baier K, Gabor M, et al. Dose-Response Relationship for Image-Guided Stereotactic Body Radiotherapy of Pulmonary Tumors: Relevance of 4D Dose Calculation. Int J Radiat Oncol Biol Phys. 2009;74:47–54.

    Article  Google Scholar 

  23. R Core Team. R: A Language and Environment for Statistical Computing 2015. R Foundation for Statistical Computing. Vienna, Austria, url: https://www.R-project.org/.

  24. Eisenhauer E, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.

    Article  CAS  Google Scholar 

  25. Dubben HH, Thames HD, Beck-Bornholdt HP. Tumor volume: a basic and specific response predictor in radiotherapy. Radiother Oncol. 1998;47:167–74.

    Article  CAS  Google Scholar 

  26. Bentzen SM, Thames HD. Tumor volume and local control probability: clinical data and radiobiological interpretations. Int J Radiat Oncol Biol Phys. 1996;36:247–51.

    Article  CAS  Google Scholar 

  27. Broström G, Holmberg H. Generalized linear models with clustered data: Fixed and random effects models. Comput Stat Data Anal. 2011;55:3123–34.

    Article  Google Scholar 

  28. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.

    Article  CAS  Google Scholar 

  29. Harrell FEJ. Resampling,validating, describing, and simplifying the model. In: Harrell FEJ, editor. Regres Model Strateg. New York: Springer-Verlag; 2001. pp. 87–103.

    Chapter  Google Scholar 

  30. Harrell FEJ. Multivariable Modeling Strategies. In: Harrell FEJ, editor. Regres. Model. Strateg. New York: Springer-Verlag; 2001. pp. 53–85.

    Chapter  Google Scholar 

  31. Iasonos A, Schrag D, Raj GV, Panageas KS. How to build and interpret a nomogram for cancer prognosis. J Clin Oncol. 2008;26:1364–70.

    Article  Google Scholar 

  32. Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr. 1974;19:716–23.

    Article  Google Scholar 

  33. Therneau TM, Grambsch PM. Modeling survival data: extending the Cox model. New York: Springer; 2000.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Diletto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

For this study, institutional review and patient informed consent were not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diletto, B., Dinapoli, N., Chiesa, S. et al. Hypofractionated stereotactic radiotherapy for oligometastatic patients: developing of a response predictive model. Med Oncol 35, 146 (2018). https://doi.org/10.1007/s12032-018-1206-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-018-1206-4

Keywords

Navigation