Skip to main content

Advertisement

Log in

Prospects of chimeric antigen receptor T cell therapy in ovarian cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Despite advances in various chemotherapy regimens, current therapeutic options are limited for ovarian cancer patients. Immunotherapy provides a promising and novel treatment option for ovarian cancer. Recently, chimeric antigen receptor (CAR) T cell therapy has shown promising results in hematological tumors and current research is going on in various solid tumors like ovarian cancer. CAR T cells are genetically engineered T cells with major histocompatibility complex-independent, tumor-specific, immune-mediated cytolytic actions against cancer cells. Initial studies of CAR T cell therapy have shown promising results in ovarian cancer, but there are some obstacles like impaired T cell trafficking, lack of antigenic targets, cytokine release syndrome and most important immunosuppressive tumor microenvironment. Optimization of design, improving tumor microenvironment and combinations with other therapies may help us in improving CAR T cell efficacy. In this review article, we highlight the current knowledge regarding CAR T cell therapy in ovarian cancer. We have discussed basic functioning of CAR T cells, their rationale and clinical outcome in ovarian cancer with limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer Statistics. CA Cancer J Clin. 2017;67(1):7–30.

    Article  PubMed  Google Scholar 

  2. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012 v1. 0, Cancer incidence and mortality worldwide: IARC cancerbase no. 11. Lyon, France: International Agency for Research on Cancer; 2013. Accessed Apr 2014.

  3. Goff BA, Mandel L, Muntz HG, Melancon CH. Ovarian carcinoma diagnosis. Cancer. 2000;89:2068–75.

    Article  CAS  PubMed  Google Scholar 

  4. Herzog TJ. The current treatment of recurrent ovarian cancer. Curr Oncol Rep. 2006;8:448–54.

    Article  CAS  PubMed  Google Scholar 

  5. Baldwin LA, Huang B, Miller RW, Tucker T, Goodrich ST, Podzielinski I, et al. Ten-year relative survival for epithelial ovarian cancer. Obstet Gynecol. 2012;120:612–8.

    Article  PubMed  Google Scholar 

  6. June CH. Adoptive T cell therapy for cancer in the clinic. J Clin Invest. 2007;117:1466–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fujita K, Ikarashi H, Takakuwa K, Kodama S, Tokunaga A, Takahashi T, Tanaka K. Prolonged disease-free period in patients with advanced epithelial ovarian cancer after adoptive transfer of tumor-infiltrating lymphocytes. Clin Cancer Res. 1995;1:501–7.

    CAS  PubMed  Google Scholar 

  8. Aoki Y, Takakuwa K, Kodama S, Tanaka K, Takahashi M, Tokunaga A, Takahashi T. Use of adoptive transfer of tumor-infiltrating lymphocytes alone or in combination with cisplatin-containing chemotherapy in patients with epithelial ovarian cancer. Cancer Res. 1991;51:1934–9.

    CAS  PubMed  Google Scholar 

  9. Koneru M, O’Cearbhaill R, Pendharkar S, Spriggs DR, Brentjens RJ. A phase I clinical trial of adoptive T cell therapy using IL-12 secreting MUC-16(ecto) directed chimeric antigen receptors for recurrent ovarian cancer. J Transl Med. 2015;13:102.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Song DG, Ye Q, Carpenito C, Poussin M, Wang LP, Ji C, Figini M, June CH, Coukos G, Powell DJ Jr. In vivo persistence, tumor localization, and antitumor activity of CAR-engineered T cells is enhanced by costimulatory signaling through CD137 (4-1BB). Cancer Res. 2011;71:4617–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Campoli M, Ferrone S. HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene. 2008;27:5869–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang CC, Campoli M, Ferrone S. Classical and nonclassical HLA class I antigen and NK Cell-activating ligand changes in malignant cells: current challenges and future directions. Adv Cancer Res. 2005;93:189–234.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao Z, Condomines M, van der Stegen SJ, Perna F, Kloss CC, Gunset G, et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell. 2015;28(4):415–28. https://doi.org/10.1016/j.ccell.2015.09.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3(4):388–98. https://doi.org/10.1158/2159-8290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chmielewski M, Hombach AA, Abken H. Antigen-specific T-cell activation independently of the MHC: chimeric antigen receptor-redirected T cells. Front Immunol. 2013;4:371. https://doi.org/10.3389/fimmu.2013.00371.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Riddell SR, Sommermeyer D, Berger C, Liu LS, Balakrishnan A, Salter A, Hudecek M, Maloney DG, Turtle CJ. Adoptive therapy with chimeric antigen receptor-modified T cells of defined subset composition. Cancer J. 2014;20:141–4. https://doi.org/10.1097/PPO.0000000000000036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kershaw MH, Westwood JA, Slaney CY, Darcy PK. Clinical application of genetically modified T cells in cancer therapy. Clin Transl Immunol. 2014;3(5):e16.

    Article  Google Scholar 

  18. Yasukawa M, Ohminami H, Arai J, Kasahara Y, Ishida Y, Fujita S. Granule exocytosis, and not the fas/fas ligand system, is the main pathway of cytotoxicity mediated by alloantigen-specific CD4(+) as well as CD8(+)cytotoxic T lymphocytes in humans. Blood. 2000;95(7):2352–5.

    CAS  PubMed  Google Scholar 

  19. Hombach A, Kohler H, Rappl G, Abken H. Human CD4 + T cells lyse target cells via granzyme/perforin upon circumvention of MHC class II restriction by an antibody-like immunoreceptor. J Immunol. 2006;177(8):5668–75. https://doi.org/10.1186/s12967-015-0460-x.

    Article  CAS  PubMed  Google Scholar 

  20. Maus MV, Grupp SA, Porter DL, June CH. Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood. 2014;123(17):2625–35. https://doi.org/10.1182/blood-2013-11-492231.5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pegram HJ, Park JH, Brentjens RJ. CD28z CARs and armored CARs. Cancer J. 2014;20(2):127. https://doi.org/10.1097/PPO.0000000000000034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, Chew A, Gonzalez VE, Zheng Z, Lacey SF, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507–17.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, Loren AW, Bagg A, Marcucci KT, Shen A, Gonzalez V, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Med Sci Transl. 2015; 7:303ra139.

  24. Garfall AL, Maus MV, Hwang WT, Lacey SF, Mahnke YD, Melenhorst JJ, Zheng Z, Vogl DT, Cohen AD, Weiss BM, et al. Chimeric antigen receptor T cells against CD19 for multiple myeloma. N Engl J Med. 2015;373:1040–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M, Shah NN, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385:517–28.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348:203–13.

    Article  CAS  PubMed  Google Scholar 

  27. Tomsova M, Melichar B, Sedlakova I, Steiner I. Prognostic significance of CD3 + tumor-infiltrating lymphocytes in ovarian carcinoma. Gynecol Oncol. 2008;108:415–20.

    Article  CAS  PubMed  Google Scholar 

  28. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, Frosina D, Gnjatic S, Ambrosone C, et al. Intraepithelial CD8 + tumorinfiltrating lymphocytes and a high CD8 +/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA. 2005;102:18538–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon- Hogan M, Conejo-Garcia JR, Zhang L, Burow M, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10:942–9.

    Article  CAS  PubMed  Google Scholar 

  30. Kenemans P. CA 125 and OA 3 as target antigens for immunodiagnosis and immunotherapy in ovarian cancer. Eur J Obstet Gynecol Reprod Biol. 1990;36:221–8.

    Article  CAS  PubMed  Google Scholar 

  31. Rosenblum MG, Verschraegen CF, Murray JL, Kudelka AP, Gano J, Cheung L, Kavanagh JJ. Phase I study of 90Y-labeled B72.3 intraperitoneal administration in patients with ovarian cancer: effect of dose and EDTA coadministration on pharmacokinetics and toxicity. Clin Cancer Res. 1999;5:953–61.

    CAS  PubMed  Google Scholar 

  32. Disis ML, Gooley TA, Rinn K, Davis D, Piepkorn M, Cheever MA, Knutson KL, Schiffman K. Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol. 2002;20:2624–32.

    Article  CAS  PubMed  Google Scholar 

  33. Disis ML, Goodell V, Schiffman K, Knutson KL. Humoral epitope-spreading following immunization with a HER-2/neu peptide based vaccine in cancer patients. J Clin Immunol. 2004;24:571–8.

    Article  CAS  PubMed  Google Scholar 

  34. Vlad AM, Kettel JC, Alajez NM, Carlos CA, Finn OJ. MUC1 immunobiology: from discovery to clinical applications. Adv Immunol. 2004;82:249–93.

    Article  CAS  PubMed  Google Scholar 

  35. Chang K, Pastan I. Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers. Proc Natl Acad Sci USA. 1996;93:136–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Coliva A, Zacchetti A, Luison E, Tomassetti A, Bongarzone I, Seregni E, Bombardieri E, Martin F, Giussani A, Figini M, Canevari S. 90Y Labeling of monoclonal antibody MOv18 and preclinical validation for radio immunotherapy of human ovarian carcinomas. Cancer Immunol Immunother. 2005;54:1200–13.

    Article  CAS  PubMed  Google Scholar 

  37. Odunsi K, Jungbluth AA, Stockert E, Qian F, Gnjatic S, Tammela J, Intengan M, Beck A, Keitz B, Santiago D, et al. NY-ESO-1 and LAGE-1 cancer-testis antigens are potential targets for immunotherapy in epithelial ovarian cancer. Cancer Res. 2003;63:6076–83.

    CAS  PubMed  Google Scholar 

  38. Felder M, Kapur A, Gonzalez-Bosquet J, Horibata S, Heintz J, et al. MUC16 (CA125): tumor biomarker to cancer therapy, a work in progress. Mol Cancer. 2014;13:129.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Das S, Batra SK. Understanding the unique attributes of MUC16 (CA125): potential implications in targeted therapy. Cancer Res. 2015;75:4669–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Haridas D, Ponnusamy MP, Chugh S, Lakshmanan I, Seshacharyulu P, et al. MUC16: molecular analysis and its functional implications in benign and malignant conditions. Faseb J. 2014;28:4183–99.

    Article  CAS  PubMed  Google Scholar 

  41. Liu Q, Cheng Z, Luo L, Yang Y, Zhang Z, et al. C-terminus of MUC16 activates Wnt signaling pathway through its interaction with beta-catenin to promote tumorigenesis and metastasis. Oncotarget. 2016;7:36800–13.

    PubMed  PubMed Central  Google Scholar 

  42. Togami S, Nomoto M, Higashi M, Goto M, Yonezawa S, et al. Expression of mucin antigens (MUC1 and MUC16) as a prognostic factor for mucinous adenocarcinoma of the uterine cervix. J Obstet Gynaecol Res. 2010;36:588–97.

    Article  CAS  PubMed  Google Scholar 

  43. Streppel MM, Vincent A, Mukherjee R, Campbell NR, Chen SH, et al. Mucin 16 (cancer antigen 125) expression in human tissues and cell lines and correlation with clinical outcome in adenocarcinomas of the pancreas, esophagus, stomach, and colon. Hum Pathol. 2012;43:1755–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rao TD, Tian H, Ma X, Yan X, Api S, et al. Expression of the Carboxy-Terminal Portion of MUC16/CA125 Induces Transformation and Tumor Invasion. PLoS ONE. 2015;10(e0126633):32.

    Google Scholar 

  45. McLemore MR, Aouizerat B. Introducing the MUC16 gene: implications for prevention and early detection in epithelial ovarian cancer. Biol Res Nurs. 2005;6:262–7.

    Article  PubMed  Google Scholar 

  46. Chekmasova AA, Rao TD, Nikhamin Y, et al. Successful eradication of established peritoneal ovarian tumors in SCID-Beige mice following adoptive transfer of T cells genetically targeted to the MUC16 antigen. Clin Cancer Res Off J Am Assoc Cancer Res. 2010;16(14):3594–606. https://doi.org/10.1158/1078-0432.CCR-10-0192.

    Article  CAS  Google Scholar 

  47. Koneru M, Purdon TJ, Spriggs D, Koneru S, Brentjens RJ. IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. Oncoimmunology. 2015;4(3):e994446. https://doi.org/10.4161/2162402X.2014.994446.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Salazar MD, Ratnam M. The folate receptor: what does it promise in tissue-targeted therapeutics? Cancer Metastasis Rev. 2007;26:141–52.

    Article  CAS  PubMed  Google Scholar 

  49. Kelemen LE. The role of folate receptor alpha in cancer development, progression and treatment: cause, consequence or innocent bystander? Int J Cancer. 2006;119:243–50.

    Article  CAS  PubMed  Google Scholar 

  50. Toffoli G, Cernigoi C, Russo A, Gallo A, Bagnoli M, Boiocchi M. Overexpression of folate binding protein in ovarian cancers. Int J Cancer. 1997;74:193–8.

    Article  CAS  PubMed  Google Scholar 

  51. Shi H, Guo J, Li C, Wang Z. A current review of folate receptor alpha as a potential tumor target in non-small-cell lung cancer. Drug Des Devel Ther. 2015;9:4989–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Boogerd LS, Boonstra MC, Beck AJ, Charehbili A, Hoogstins CE, Prevoo HA, Singhal S, Low PS, van de Velde CJ, Vahrmeijer AL. Concordance of folate receptor-alpha expression between biopsy, primary tumor and metastasis in breast cancer and lung cancer patients. Oncotarget. 2016. https://doi.org/10.18632/oncotarget.7856.

    PubMed  PubMed Central  Google Scholar 

  53. O’shannessy DJ, Somers EB, Maltzman J, Smale R, Fu YS. Folate receptor alpha (FRA) expression in breast cancer: identification of a new molecular subtype and association with triple negative disease. Springerplus. 2012; 1:22.

  54. Siu MK, Kong DS, Chan HY, Wong ES, Ip PP, Jiang L, Ngan HY, Le XF, Cheung AN. Paradoxical impact of two folate receptors, FRalpha and RFC, in ovarian cancer: effect on cell proliferation, invasion and clinical outcome. PLoS ONE. 2012;7:e47201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Canevari S, Stoter G, Arienti F, Bolis G, Colnaghi MI, Di Re EM, Eggermont AM, Goey SH, Gratama JW, Lamers CH, et al. Regression of advanced ovarian carcinoma by intraperitoneal treatment with autologous T lymphocytes retargeted by a bispecific monoclonal antibody. J Natl Cancer Inst. 1995;87:1463–9.

    Article  CAS  PubMed  Google Scholar 

  56. Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA, White DE, Wunderlich JR, Canevari S, Rogers-Freezer L, Chen CC, Yang JC, Rosenberg SA, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res. 2006;12:6106–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chang K, Pastan I, Willingham MC. Isolation and characterization of a monoclonal antibody, K1, reactive with ovarian cancers and normal mesothelium. Int J Cancer. 1992;50:373–81.

    Article  CAS  PubMed  Google Scholar 

  58. Ordonez NG. Value of mesothelin immunostaining in the diagnosis of mesothelioma. Mod Pathol. 2003;16:192–7.

    Article  PubMed  Google Scholar 

  59. Argani P, Iacobuzio-Donahue C, Ryu B, et al. Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin Cancer Res. 2001;7:3862–8.

    CAS  PubMed  Google Scholar 

  60. Hassan R, Kreitman RJ, Pastan I, et al. Localization of mesothelin in epithelial ovarian cancer. Appl Immunohistochem Mol Morphol. 2005;13:243–7.

    Article  CAS  PubMed  Google Scholar 

  61. Ordonez NG. Application of mesothelin immunostaining in tumor diagnosis. Am J Surg Pathol. 2003;27:1418–28.

    Article  PubMed  Google Scholar 

  62. Rump A, Morikawa Y, Tanaka M, et al. Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J Biol Chem. 2004;279:9190–8.

    Article  CAS  PubMed  Google Scholar 

  63. Cheng WF, Huang CY, Chang MC, Hu YH, Chiang YC, Chen YL, Hsieh CY, Chen CA. High mesothelin correlates with chemoresistance and poor survival in epithelial ovarian carcinoma. Br J Cancer. 2009;100:1144–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM, et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA. 2009;106:3360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lanitis E, Poussin M, Hagemann IS, Coukos G, Sandaltzopoulos R, Scholler N, Powell DJ Jr. Redirected antitumor activity of primary human lymphocytes transduced with a fully human anti-mesothelin chimeric receptor. Mol Ther. 2012;20:633–43.

    Article  CAS  PubMed  Google Scholar 

  66. Tanyi JL, Haas AR, Beatty GL, Stashwick CJ, O’Hara MH, Morgan MA. Anti-mesothelin chimeric antigen receptor T cells in patients with epithelial ovarian cancer. J Clin Oncol. 2016;34(15):5511. https://doi.org/10.1200/JCO.2016.34.15_suppl.5511.

    Google Scholar 

  67. Rubin I, Yarden Y. The basic biology of HER2. Ann Oncol. 2001;12(Suppl 1):S3–8.

    Article  PubMed  Google Scholar 

  68. Bargmann CI, Hung MC, Weinberg RA. The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature. 1986;319:226–30.

    Article  CAS  PubMed  Google Scholar 

  69. Neve RM, Lane HA, Hynes NE. The role of overexpressed HER2 in transformation. Ann Oncol. 2001;12(Suppl 1):S9–13.

    Article  PubMed  Google Scholar 

  70. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–82.

    Article  CAS  PubMed  Google Scholar 

  71. Hirsch FR, Varella-Garcia M, Franklin WA, Veve R, Chen L, Helfrich B, Zeng C, Baron A, Bunn PA Jr. Evaluation of HER-2/neu gene amplification and protein expression in non-small cell lung carcinomas. Br J Cancer. 2002;86:1449–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tan AR, Swain SM. Ongoing adjuvant trials with trastuzumab in breast cancer. Semin Oncol. 2003;30(Suppl 16):54–64.

    Article  CAS  PubMed  Google Scholar 

  73. Spector N, et al. HER2 therapy. Small molecule HER-2 tyrosine kinase inhibitors. Breast Cancer Res. 2007;9(2):205.

    Article  PubMed Central  Google Scholar 

  74. Sun M, Shi H, Liu C, Liu J, Liu X, Sun Y. Construction and evaluation of a novel humanized HER2-specific chimeric receptor. Breast Cancer Res. 2014;16:R61.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bielamowicz K, Fousek K, Byrd TT, Samaha H, Mukherjee M, Aware N, et al. Trivalent CAR T-cells overcome interpatient antigenic variability in glioblastoma. Neuro Oncol. 2017. https://doi.org/10.1093/neuonc/nox182.

    Google Scholar 

  76. Caruso HG, Hurton LV, Najjar A, Rushworth D, Ang S, Olivares S, et al. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity. Can Res. 2015;75:3505–18.

    Article  CAS  Google Scholar 

  77. Jones BS, Lamb LS, Goldman F, Di Stasi A. Improving the safety of cell therapy products by suicide gene transfer. Frontiers Pharmacol. 2014;5.

  78. Craddock JA, Lu A, Bear A, Pule M, Brenner MK, Rooney CM, et al. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J Immunother. 2010;33(8):780–8. https://doi.org/10.1097/CJI.0b013e3181ee6675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nishio N, Diaconu I, Liu H, Cerullo V, Caruana I, Hoyos V, et al. Armed oncolytic virus enhances immune functions of chimeric antigen receptor– modified T cells in solid tumors. Cancer Res. 2014;74(18):5195–205. https://doi.org/10.1158/0008-5472.CAN-14-0697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Caruana I, Savoldo B, Hoyos V, Weber G, Liu H, Kim ES, et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat Med. 2015;21(5):524–9. https://doi.org/10.1038/nm.3833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ligtenberg MA, Mougiakakos D, Mukhopadhyay M, Witt K, Lladser A, Chmielewski M, et al. Coexpressed catalase protects chimeric antigen receptor–redirected T cells as well as bystander cells from oxidative stress-induced loss of antitumor activity. J Immunol. 2016;196(2):759–66. https://doi.org/10.4049/jimmunol.1401710.

    Article  CAS  PubMed  Google Scholar 

  82. Newick K, O’Brien S, Sun J, Kapoor V, Maceyko S, Lo A, et al. Augmentation of CAR T-cell trafficking and antitumor efficacy by blocking protein kinase a localization. Cancer Immunol Res. 2016;4(6):541–51. https://doi.org/10.1158/2326-6066.CIR-15-0263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ninomiya S, Narala N, Huye L, Yagyu S, Savoldo B, Dotti G, Heslop HE, Brenner MK, Rooney CM, Ramos CA. Tumor indoleamine 2,3-dioxygenase (IDO) inhibits CD19-CAR T cells and is downregulated by lymphodepletingdrugs. Blood. 2015;125(25):3905–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Quatromoni JG, Wang Y, Vo DD, et al. T cell receptor (TCR)-transgenic CD8 lymphocytes rendered insensitive to transforming growth factor beta (TGFβ) signaling mediate superior tumor regression in an animal model of adoptive cell therapy. J Transl Med. 2012;10:127. https://doi.org/10.1186/1479-5876-10-127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

Special thanks to Dr. Manisha Dhananjaya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Jindal.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jindal, V., Arora, E., Gupta, S. et al. Prospects of chimeric antigen receptor T cell therapy in ovarian cancer. Med Oncol 35, 70 (2018). https://doi.org/10.1007/s12032-018-1131-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-018-1131-6

Keywords

Navigation