Medical Oncology

, 35:73 | Cite as

Radiotherapy in patients with cardiac implantable electronic devices: clinical and dosimetric aspects

  • Giulia Riva
  • Ombretta Alessandro
  • Ruggero Spoto
  • Annamaria Ferrari
  • Cristina Garibaldi
  • Federica Cattani
  • Rosa Luraschi
  • Elena Rondi
  • Nicola Colombo
  • Fulvio Lorenzo Francesco Giovenzana
  • Carlo Maria Cipolla
  • Mikolaj Winnicki
  • Martina Persiani
  • Fabiana Castelluccia
  • Massimo Sarra Fiore
  • Roberto Orecchia
  • Barbara Alicja Jereczek-Fossa
Original Paper
  • 2 Downloads

Abstract

As a result of aging, the number of patients with cardiac implantable electronic device (CIED) requiring radiotherapy (RT) continues to rise. The aim of this work was to evaluate RT-related malfunctions of CIED in a cohort of patients who underwent RT in our clinic from June 2010 to December 2016. We retrospectively analyzed 93 RT treatments in 63 patients with CIEDs. Patients were treated with 3D conformal RT, intensity-modulated RT and stereotactic RT. We collected clinical characteristics of cancer, models of CIEDs, total RT dose to tumor and radiation energy. Radiation dose delivered to CIED and its dysfunctions after RT was evaluated. Subgroup analysis of 48 RT treatments (32 patients) on chest and neck plus on 13 RT treatments (12 patients) with 18 MV neutron-producing photon energy considered as high risk was performed. The number of treatments of patients with CIEDs increased from 0.3% in 2011 to 1.2% in 2016. Two patients, treated with 18 MV photon beam, with implantable cardioverter–defibrillators (ICDs) that received a maximum dose of around 2.1 Gy, experienced adverse events: a reprogramming of ICD when the patient reached a delivered dose to the tumor of 32 Gy, and an altered sensing function requiring replacement after 11 months from the end of RT. Nearly 2% of patients with CIEDs from high-risk patients subgroup had experienced a damage of the device. Close cooperation between radiation oncologists, cardiologists, medical physicists and radiation technologists is needed to achieve the best practice management in these patients.

Keywords

Cancer Cardiac implantable electronic devices Cardiac toxicity Radiotherapy 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Mond HG, Irwin M, Ector H, Proclemer A. The world survey of cardiac pacing and cardioverter defibrillators: calendar year 2005 an International Cardiac Pacing and Electrophysiology Society (ICPES) project. Pacing Clin Electrophysiol. 2008;31:1202–12.CrossRefPubMedGoogle Scholar
  2. 2.
    Atun R, Jaffray DA, Barton MB, Bray F, Baumann M, Vikram B, et al. Expanding global access to radiotherapy. Lancet Oncol. 2015;16:1153–86.CrossRefPubMedGoogle Scholar
  3. 3.
    Steward BW, Wild CP. The International Agency for Research on Cancer (IARC), the specialized cancer agency of the World Health Organization. Global battle against cancer won’t be won with treatment alone effective prevention measures urgently needed to prevent cancer crisis. World Cancer Rep. 2014;134:3513S–6S.Google Scholar
  4. 4.
    Sundar S, Symonds RP, Deehan C. Radiotherapy to patients with artificial cardiac pacemakers. CancerTreat Rev. 2005;31:474–86.Google Scholar
  5. 5.
    Elders J, Kunze-Busch M, Jan Smeenk R, Smeets JL. High incidence of implantable cardioverter defibrillator malfunctions during radiation therapy: neutrons as a probable cause of soft errors. Europace. 2013;15:60–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Hudson F, Coulshed D, D’Souza E, Baker C. Effect of radiation therapy on the latest generation of pacemakers and implantable cardioverter defibrillators: a systematic review. J Med Imaging Radiat Oncol. 2010;54:53–61.CrossRefPubMedGoogle Scholar
  7. 7.
    Indik JH, Gimbel JR, Abe H, Alkmim-Teixeira R, Birgersdotter-Green U, Clarke GD, et al. HRS expert consensus statement on magnetic resonance imaging and radiation exposure in patients with cardiovascular implantable electronic devices. Heart Rhythm. 2017;14:97–153.CrossRefGoogle Scholar
  8. 8.
    Makkar A, Prisciandaro J, Agarwal S, Lusk M, Horwood L, Moran J, et al. Effect of radiation therapy on permanent pacemaker and implantable cardioverter-defibrillator function. Heart Rhythm. 2012;9:1964–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Marbach JR, Sontag MR, Van Dyk J, Wolbarst AB. Management of radiation oncology patients with implanted cardiac pacemaker: report of AAPM task group no. 34. Med Phys. 1994;21:85–90.CrossRefPubMedGoogle Scholar
  10. 10.
    Langer M, Orlandi E, Carrara M, Previtali P, Haeusler EA. Management of patients with implantable cardioverter defibrillator needing radiation therapy for cancer. Br J Anaesth. 2012;108:881–2.CrossRefPubMedGoogle Scholar
  11. 11.
    Hurkmans CW, Knegjens JL, Oei BS, Maas AJ, Uiterwaal GJ, van der Borden AJ, et al. Management of radiation oncology patients with a pacemaker or ICD: a new comprehensive practical guideline in the Netherlands. Radiat Oncol. 2012;7:198.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gauter-Fleckenstein B, Israel CW, Dorenkamp M, Dunst J, Roser M, Schimpf R, et al. DEGRO/DGK guideline for radiotherapy in patients with cardiac implantable electronic devices. Strahlenther Onkol. 2015;191:393–404.CrossRefPubMedGoogle Scholar
  13. 13.
    Grant JD, Jensen GL, Tang C, Pollard JM, Kry SF, Krishnan S, et al. Radiotherapy-induced malfunction in contemporary cardiovascular implantable electronic devices: clinical incidence and predictors. JAMA Oncol. 2015;1:628–32.CrossRefGoogle Scholar
  14. 14.
    Bagur R, Chamula M, Brouillard É, Lavoie C, Nombela-Franco L, Julien AS, et al. Radiotherapy-induced cardiac implantable electronic device dysfunction in patients with cancer. Am J Cardiol. 2017;119:284–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Maisel WH, Moynahan M, Zuckerman BD, Gross TP, Tovar OH, Tillman DB, et al. Pacemaker and ICD generator malfunctions: analysis of food and drug administration annual reports. JAMA. 2006;26(295):1901–6.CrossRefGoogle Scholar
  16. 16.
    Souliman SK, Christie J. Pacemaker failure induced by radiotherapy. Pacing Clin Electrophysiol. 1994;7:270–3.CrossRefGoogle Scholar
  17. 17.
    Hurkmans CW, Scheepers E, Springorum BG, Uiterwaal H. Influence of radiotherapy on the latest generation of pacemakers. Radiother Oncol. 2005;76:93–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Zaremba T, Jakobsen AR, Søgaard M, Thøgersen AM, Johansen MB, Madsen LB, et al. Risk of device malfunction in cancer patients with implantable cardiac device undergoing radiotherapy: a population-based cohort study. Pacing Clin Electrophysiol. 2015;38:343–56.CrossRefPubMedGoogle Scholar
  19. 19.
    Medtronic. Therapeutic radiation revision E, 22-Dec-2008. Mounds View, MN, CRDM Technical Service US; 2008.Google Scholar
  20. 20.
    Biotronik. Radiation therapy and BIOTRONIK CRM devices—pacemakers (IPG), defibrillators (ICD) and CRT-devices. Berlin, Germany, Global Technical Service CRM; 2011.Google Scholar
  21. 21.
    Boston Scientific. Therapeutic radiation and implantable device systems revision 002–1675, rev. B. US. Marlborough, MA, Technical Service; 2012.Google Scholar
  22. 22.
    St. Jude Medical. Effects of therapeutic radiation on St. Jude medical implantable cardiac rhythm devices, revision 10/13. Sylmar, CA, Technical Service; 2013.Google Scholar
  23. 23.
    Zecchin M, Morea G, Severgnini M, Sergi E, Baratto Roldan A, Bianco E, et al. Malfunction of cardiac devices after radiotherapy without direct exposure to ionizing radiation: mechanisms and experimental data. Europace. 2016;18:288–93.CrossRefPubMedGoogle Scholar
  24. 24.
    Gossman MS, Wilkinson JD, Mallick A. Treatment approach, delivery, and follow-up evaluation for cardiac rhythm disease management patients receiving radiation therapy: retrospective physician surveys including chart reviews at numerous centers. Med Dosim. 2014;39:320–4.CrossRefPubMedGoogle Scholar
  25. 25.
    Zaremba T, Jakobsen AR, Thøgersen AM, Oddershede L, Riahi S. The effect of radiotherapy beam energy on modern cardiac devices: an in vitro study. Europace. 2014;16:612–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Kry SF, Bednarz B, Howell RM, Dauer L, Followill D, Klein E, et al. AAPM TG 158: measurement and calculation of doses outside the treated volume from external-beam radiation therapy. Med Phys. 2017;44:391–429.CrossRefGoogle Scholar
  27. 27.
    Brambatti M, Mathew R, Strang B, Dean J, Goyal A, Hayward JE, et al. Management of patients with implantable cardioverter-defibrillators and pacemakers who require radiation therapy. Heart Rhythm. 2015;12:2148–54.CrossRefPubMedGoogle Scholar
  28. 28.
    Salerno F, Gomellini S, Caruso C, Barbara R, Musio D, Coppi T, et al. Management of radiation therapy patients with cardiac defibrillator or pacemaker. Radiol Med. 2016;121:515–20.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Giulia Riva
    • 1
    • 2
  • Ombretta Alessandro
    • 1
    • 2
  • Ruggero Spoto
    • 2
  • Annamaria Ferrari
    • 2
  • Cristina Garibaldi
    • 3
  • Federica Cattani
    • 4
  • Rosa Luraschi
    • 4
  • Elena Rondi
    • 4
  • Nicola Colombo
    • 5
  • Fulvio Lorenzo Francesco Giovenzana
    • 5
  • Carlo Maria Cipolla
    • 5
  • Mikolaj Winnicki
    • 6
  • Martina Persiani
    • 2
  • Fabiana Castelluccia
    • 2
  • Massimo Sarra Fiore
    • 2
  • Roberto Orecchia
    • 7
  • Barbara Alicja Jereczek-Fossa
    • 1
    • 2
  1. 1.Department of Oncology and Hemato-oncologyUniversity of MilanMilanItaly
  2. 2.Department of RadiotherapyEuropean Institute of OncologyMilanItaly
  3. 3.Radiation Research UnitEuropean Institute of OncologyMilanItaly
  4. 4.Medical Physics UnitEuropean Institute of OncologyMilanItaly
  5. 5.Division of CardiologyEuropean Institute of OncologyMilanItaly
  6. 6.Cardiovascular DivisionMayo ClinicRochesterUSA
  7. 7.Scientific DirectionEuropean Institute of OncologyMilanItaly

Personalised recommendations