Advertisement

Medical Oncology

, 35:54 | Cite as

Protective effects of purple carrot extract (Daucus carota) against rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide

  • Glaucia Resende Soares
  • Carolina Foot Gomes de Moura
  • Marcelo Jose Dias Silva
  • Wagner Vilegas
  • Aline Boveto Santamarina
  • Luciana Pellegrini Pisani
  • Debora Estadella
  • Daniel Araki Ribeiro
Original Paper
  • 171 Downloads

Abstract

The aim of this study was to evaluate the chemopreventive potential of purple carrot extract following rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide (4NQO). For this purpose, histopathological analysis, proliferative status, antioxidant activity and inflammatory status were investigated in this setting. A total of 20 male rats were distributed into four groups as follows (n = 5 per group): Group 1—free access to water and commercial diet for 12 weeks; Group 2—received 4NQO at 50 ppm dose in drinking water daily and commercial diet for 12 weeks; Group 3—free access to water and received diet supplemented with purple carrot extract (0.1 g/kg) for 12 weeks; and Group 4—received 4NQO at 50 ppm dose in drinking water daily and diet supplemented with purple carrot extract (0.1 g/kg) for 12 weeks. Histopathological analysis revealed that animals treated with purple carrot extract reduced the oral lesions such as dysplasia and squamous cell carcinoma. Animals with oral pre-neoplastic lesions and treated with purple carrot extract decreased ki-67 and 8-OHdG immunoexpression. Moreover, pNFκBp50 and MyD88 protein expressions were decreased after purple carrot treatment associated or not with 4NQO exposure. SOD-Mn mRNA levels increased with treatment with purple carrot extract as well. In conclusion, our results demonstrated that purple carrot extract was able to protect oral lesions induced by 4NQO in Wistar rats as a result of antioxidant activity, anti-inflammatory potential and antiproliferative and antimutagenic actions.

Keywords

Oral cancer Rat 4-Nitroquinoline 1-oxide Purple carrot Chemopreventive studies 

Notes

Acknowledgements

GRS and CFGM are recipients of CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) fellowship. DAR and WV are recipients of CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico) fellowship. MJDS is a recipient of FAPESP (Fundação de Amparo a Pesquisa do Estado de São Paulo) fellowship.

Compliance with ethical standards

Conflict of interest

None declared.

References

  1. 1.
    Network CGA. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517(7536):576–82.CrossRefGoogle Scholar
  2. 2.
    Dayyani F, Etzel CJ, Liu M, Ho C, Lippman SM, Tsao ASRM. Research-analysis of the impact of human papillomavirus (HPV) on cancer risk and overall survival in head and neck squamous cell carcinomas (HNSCC). Head Neck Oncol. 2010;2:15.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Parkin DM, Whelan SL, Ferlay J, Storm H. Cancer incidence in five continents, Cancer base no. 7, vols I–III. Lyon: IARC Scientific Publications; 2005.Google Scholar
  4. 4.
    Chuang AY, Chuang TC, Chang S, Zhou S, Begum S, Westra WH, Ha PK, Koch WM, Califano JA. Presence of HPV DNA in convalescent salivary rinses is an adverse prognostic marker in head and neck squamous cell carcinoma. Oral Oncol. 2008;44:915–9.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gillison ML, Shah KV. Human papillomavirus-associated head and neck squamous cell carcinoma, mounting evidence for an etiologic role for human papillomavirus in a subset of head and neck cancers. Curr Opin Oncol. 2001;13:183–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Tanaka T, Kawabata K, Kakumoto M, Matsunaga K, Mori H, Murakami A, Kuki W, Takahashi Y, Satoh K, Hara A, Maeda M, Ota T, Odashima S, Koshimizu K, Ohigashi H. Chemoprevention of 4-nitroquinoline 1-oxide-induced oral carcinogenesis by citrus auraptene in rats. Carcinogenesis. 1998;19:425.CrossRefPubMedGoogle Scholar
  7. 7.
    Tanaka T, Ishigamori R. Understanding carcinogenesis for fighting oral cancer. J Oncol. 2011;60:3740.Google Scholar
  8. 8.
    Gollücke APB, Aguiar O Jr, Barbisan LF, Ribeiro DA. Use of polyphenols against carcinogenesis, putative molecules mechanisms of action using in vitro and in vivo test systems. J Med Food. 2013;16(3):1–7.CrossRefGoogle Scholar
  9. 9.
    Claudio SR, Gollucke AP, Yamamura H, Morais DR, Bataglion GA, Eberlin MN, Peres RC, Oshima CT, Ribeiro DA. Purple carrot extract protects against cadmium intoxication in multiple organs of rats, genotoxicity, oxidative stress and tissue morphology analyses. J Trace Elem Med Biol. 2016;33:37–47.CrossRefPubMedGoogle Scholar
  10. 10.
    Turker N, Aksay S, Ekiz HI. Effect of storage temperature on the stability of anthocyanins of a fermented black carrot (Daucus carota var. L.) beverage, shalgam. J Agric Food Chem. 2004;52(12):3807–13.CrossRefPubMedGoogle Scholar
  11. 11.
    Singh DP, Beloy J, Mclnerney JK, Day L. Impact of boron, calcium and genetic factors on vitamin C, carotenoids, phenolic acids, anthocyanins and antioxidant capacity of carrots (Daucus carota). Food Chem. 2011;132:1161–70.CrossRefPubMedGoogle Scholar
  12. 12.
    Algarra M, Fernandes A, Mateus N, Freitas V, da Silva JCGE, Casado J. Anthocyanin profile and antioxidant capacity of black carrots (Daucus carota L. ssp. sativus var. atrorubens Alef.) from Cuevas Bajas, Spain. J Food Compos and Anal. 2014;33:71–6.CrossRefGoogle Scholar
  13. 13.
    Netzel M, Netzel G, Kammerer DR, Schieber A, Carle R, Simons L, Bitsch I, Bitsch R, Konczak I. Cancer cell antiproliferation activity and metabolism of black carrot anthocyanins. Innov Food Sci Emerg Technol. 2007;8:365–72.CrossRefGoogle Scholar
  14. 14.
    Sevimli-Gur C, Cetin B, Akay S, Gulce-Iz S, Yesil-Celiktas O. Extracts from black carrot tissue culture as potent anticancer agents. Plant Foods Hum Nutr. 2013;68(3):293–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Poudyal H, Panchal S, Brown L. Comparison of purple carrot juice and β-carotene in a high-carbohydrate, high-fat diet-fed rat model of the metabolic syndrome. Br J Nutr. 2010;104(9):1322–32.CrossRefPubMedGoogle Scholar
  16. 16.
    Fracalossi AC, Comparini L, Funabashi K, Godoy C, Iwamura ES, Nascimento FD, Nader HB, Oshima CT, Ribeiro DA. Ras gene mutation is not related to tumour invasion during rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide. J Oral Pathol Med. 2011;40(4):325–33.CrossRefPubMedGoogle Scholar
  17. 17.
    de Jesus GP, Ribeiro FA, de Moura CF, Gollucke AP, Oshima CT, Ribeiro DA. Anti-tumor activity of grape juice concentrate in the rat tongue two-stage initiation-promotion protocol induced by 4-nitroquinoline 1-oxide. Toxicol Mech Methods. 2014;24(4):276–83.CrossRefPubMedGoogle Scholar
  18. 18.
    Ribeiro DA, Kitakawa D, Domingues MA, Cabral LA, Marques ME, Salvadori DM. Survivin and inducible nitric oxide synthase production during 4NQO-induced rat tongue carcinogenesis, a possible relationship. Exp Mol Pathol. 2007;83(1):131–7.CrossRefPubMedGoogle Scholar
  19. 19.
    ADA, American Dietetic Association. Position of the American Dietetic Association, functional foods. J Am Diet Assoc. 2004;104:814–26.CrossRefGoogle Scholar
  20. 20.
    Singleton VL, Orthofer R, Lamuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidant by means of Folin–Ciocalteu reagent. Method Enzymol. 1999;299:155–78.Google Scholar
  21. 21.
    Ghasemzadeh A. Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). Molecules. 2010;15:4324–33.CrossRefPubMedGoogle Scholar
  22. 22.
    Ribeiro DA, Grilli DG, Salvadori DM. Genomic instability in blood cells is able to predict the oral cancer risk, an experimental study in rats. J Mol Histol. 2008;39(5):481–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Balasenthil S, Ramachandran CR, Nagini S. Prevention of 4-nitroquinoline 1-oxide-induced rat tongue carcinogenesis by garlic. Fitoterapia. 2001;72(5):524–31.CrossRefPubMedGoogle Scholar
  24. 24.
    Kandarkar SV, Sawant SS, Reade PC. Ultrastructural changes to the palatal mucosa of rats following the application of 4-nitroquinoline-1-oxide (4NQO) and vitamin C. Oral Oncol. 1998;34(4):247–52.CrossRefPubMedGoogle Scholar
  25. 25.
    Li X, Zhang Y, Yuan Y, Sun Y, Qin Y, Deng Z, Li H. Protective effects of selenium, vitamin E, and purple carrot anthocyanins on d-galactose-induced oxidative damage in blood, liver, heart and kidney rats. Biol Trace Elem Res. 2016;173(2):433–42.CrossRefPubMedGoogle Scholar
  26. 26.
    World Cancer Research Fund/American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of cancer, a global perspective. Washington DC: AICR; 2007.Google Scholar
  27. 27.
    Ding Y, Yao H, Yao Y, Fai LY, Zhang Z. Protection of dietary polyphenols against oral cancer. Nutrients. 2013;5(6):2173–91.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wright OR, Netzel GA, Sakzewski AR. A randomized, double-blind, placebo-controlled trial of the effect of dried purple carrot on body mass, lipids, blood pressure, body composition, and inflammatory markers in overweight and obese adults, the QUENCH trial. Can J Physiol Pharmacol. 2013;91(6):480–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Metzger BT, Barnes DM, Reed JD. Purple carrot (Daucus carota L.) polyacetylenes decrease lipopolysaccharide-induced expression of inflammatory proteins in macrophage and endothelial cells. J Agric Food Chem. 2008;56(10):3554–60.CrossRefPubMedGoogle Scholar
  30. 30.
    Charron CS, Kurilich AC, Clevidence BA, Simon PW, Harrison DJ, Britz SJ, Baer DJ, Novotny JA. Bioavailability of anthocyanins from purple carrot juice, effects of acylation and plant matrix. J Agric Food Chem. 2009;57(4):1226–30.CrossRefPubMedGoogle Scholar
  31. 31.
    Olejnik A, Rychlik J, Kidoń M, Czapski J, Kowalska K, Juzwa W, Olkowicz M, Dembczyński R, Moyer MP. Antioxidant effects of gastrointestinal digested purple carrot extract on the human cells of colonic mucosa. Food Chem. 2016;190:1069–77.CrossRefPubMedGoogle Scholar
  32. 32.
    Stintzing FC, Stintzing AS, Carle R, Frei B, Wrolstad RE. Color and antioxidant properties of cyanidin-based anthocyanin pigments. J Agric Food Chem. 2002;50:6172–81.CrossRefPubMedGoogle Scholar
  33. 33.
    Konczak I, Terahara N, Yoshimoto M, Nakatani M, Yamakawa O. Regulating the composition of anthocyanins and phenolic acids in a sweet potato cell culture towards production of polyphenolic complex with enhanced physiological activity. Trends Food Sci Tech. 2005;16:377–88.CrossRefGoogle Scholar
  34. 34.
    Jing P, Bomser JA, Schwartz SJ, He J, Magnuson BA, Giusti MM. Structure-function relationships of anthocyanins from various anthocyanin-rich extracts on the inhibition of colon cancer cell growth. J Agric Food Chem. 2008;56(20):9391–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Bôas DS, Takiya CM, Coelho-Sampaio TL, Monção-Ribeiro LC, Ramos EA, Cabral MG, dos Santos JN. Immunohistochemical detection of Ki-67 is not associated with tumor-infiltrating macrophages and cyclooxygenase-2 in oral squamous cell carcinoma. J Oral Pathol Med. 2010;39(7):565–70.CrossRefPubMedGoogle Scholar
  36. 36.
    Caputo F, Vegliante R, Ghibelli L. Redox modulation of the DNA damage response. Biochem Pharmacol. 2012;84(10):1292–306.CrossRefPubMedGoogle Scholar
  37. 37.
    Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H. Free radical-induced damage to DNA, mechanisms and measurement. Free Radic Biol Med. 2002;32(11):1102–15.CrossRefPubMedGoogle Scholar
  38. 38.
    Araldi RP, de Melo TC, Mendes TB, de Sá Júnior PL, Nozima BH, Ito ET, de Carvalho RF, de Souza EB, de Cassia SR. Using the comet and micronucleus assays for genotoxicity studies, a review. Biomed Pharmacother. 2015;72:74–82.CrossRefPubMedGoogle Scholar
  39. 39.
    Collins AR. Measuring oxidative damage to DNA and its repair with the comet assay. Biochim Biophys Acta. 2014;1840(2):794–800.CrossRefPubMedGoogle Scholar
  40. 40.
    Torres-Bugarín O, Macriz Romero N, Ramos Ibarra ML, Flores-García A, Valdez Aburto P, Zavala-Cerna MG. Genotoxic effect in autoimmune diseases evaluated by the micronucleus test assay, our experience and literature review. Biomed Res Int. 2015;19:4031.Google Scholar
  41. 41.
    Kirsch-Volders M, Plas G, Elhajouji A, Lukamowicz M, Gonzalez L, Vande Loock K, Decordier I. The in vitro MN assay in 2011, origin and fate, biological significance, protocols, high throughput methodologies and toxicological relevance. Arch Toxicol. 2015;85(8):873–99.CrossRefGoogle Scholar
  42. 42.
    Batista ÂG, Ferrari AS, da Cunha DC, da Silva JK, Cazarin CB, Correa LC, Prado MA, Carvalho-Silva LB, Esteves EA, Maróstica Júnior MR. Polyphenols, antioxidants, and antimutagenic effects of Copaifera langsdorffii fruit. Food Chem. 2016;197(Pt B):1153–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Horta RN, Kahl VF, Sarmento Mda S, Nunes MF, Porto CR, Andrade VM, Ferraz Ade B, Silva JD. Protective effects of acerola juice on genotoxicity induced by iron in vivo. Genet Mol Biol. 2016;39(1):122–8.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    de Moura CF, Ribeiro FA, de Jesus GP, da Silva VH, Oshima CT, Gollücke AP, Aguiar O Jr, Ribeiro DA. Antimutagenic and antigenotoxic potential of grape juice concentrate in blood and liver of rats exposed to cadmium. Environ Sci Pollut Res Int. 2014;21(22):13118–26.CrossRefPubMedGoogle Scholar
  45. 45.
    Valavanidis A, Vlachogianni T, Fiotakis C. 8-Hydroxy-2′-deoxyguanosine (8-OHdG), a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2009;27:120–39.CrossRefPubMedGoogle Scholar
  46. 46.
    Tanaka H, Fujita N, Sugimoto R, Urawa N, Horiike S, Kobayashi Y, Iwasa M, Ma N, Kawanishi S, Watanabe S, Kaito M, Takei Y. Hepatic oxidative DNA damage is associated with increased risk for hepatocellular carcinoma in chronic hepatitis C. Br J Cancer. 2008;98:580–6.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Agha-Hosseini F, Mirzaii-Dizgah I, Farmanbar N, Abdollahi M. Oxidative stress status and DNA damage in saliva of human subjects with oral lichen planus and oral squamous cell carcinoma. J Oral Pathol Med. 2012;41(10):736–40.CrossRefPubMedGoogle Scholar
  48. 48.
    Devi PS, Kumar MS, Das SM. DNA damage protecting activity and free radical scavenging activity of anthocyanins from Red Sorghum (Sorghum bicolor) Bran. Biotechnol Res Int. 2012;25:8787.Google Scholar
  49. 49.
    Cho J, Kang JS, Long PH, Jing J, Back Y, Chung KS. Antioxidant and memory enhancing effects of purple sweet potato anthocyanin and cordyceps mushroom extract. Arch Pharm Res. 2003;26(10):821–5.CrossRefPubMedGoogle Scholar
  50. 50.
    Coskun O, Kanter M, Korkmaz A, Oter S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacol Res. 2005;51(2):117–23.CrossRefPubMedGoogle Scholar
  51. 51.
    Zhang ZF, Fan SH, Zheng YL, Lu J, Wu DM, Shan Q, Hu B. Purple sweet potato color attenuates oxidative stress and inflammatory response induced by d-galactose in mouse liver. Food Chem Toxicol. 2009;47(2):496–501.CrossRefPubMedGoogle Scholar
  52. 52.
    Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sánchez-Pérez P, Cadenas S, Lamas S. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol. 2015;6:183–97.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress, a review. Eur J Med Chem. 2015;97:55–74.CrossRefPubMedGoogle Scholar
  54. 54.
    Verma A, Bhatt PC, Kaithwas G, Sethi N, Rashid M, Singh Y, Rahman M, Al-Abbasi F, Anwar F, Kumar V. Chemomodulatory effect Melastoma malabathricum Linn against chemically induced renal carcinogenesis rats via attenuation of inflammation, oxidative stress, and early markers of tumor expansion. Inflammopharmacology. 2016;24(5):233–51.CrossRefPubMedGoogle Scholar
  55. 55.
    Hamid AA, Aiyelaagbe OO, Usman LA, Ameen OM, Lawal A. Antioxidants, its medicinal and pharmacological applications. Afr J Pure and Appl Chem. 2010;4(8):142–51.Google Scholar
  56. 56.
    Zhang Q, Yang J, Wang J. Modulatory effect of luteolin on redox homeostasis and inflammatory cytokines in a mouse model of liver cancer. Oncol Lett. 2016;12(6):4767–72.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Morais CA, de Rosso VV, Estadella D, Pisani LP. Anthocyanins as inflammatory modulators and the role of the gut microbiota. J Nutr Biochem. 2016;33:1–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Takeda K, Akira S. Toll-like receptors. Curr Protoc Immunol. 2015;109:1–10.Google Scholar
  59. 59.
    McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2013;5(4):a008656.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Heshiki W, Tomihara K, Yamazaki M, Arai N, Nakamori K, Noguchi M. Constitutive activation of caspase-3 in non-apoptotic oral squamous cell carcinoma cells. J Cancer Sci Ther. 2015;7:2014.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Glaucia Resende Soares
    • 1
  • Carolina Foot Gomes de Moura
    • 1
  • Marcelo Jose Dias Silva
    • 2
  • Wagner Vilegas
    • 2
  • Aline Boveto Santamarina
    • 1
  • Luciana Pellegrini Pisani
    • 1
  • Debora Estadella
    • 1
  • Daniel Araki Ribeiro
    • 1
  1. 1.Department of BiosciencesFederal University of São Paulo (UNIFESP)SantosBrazil
  2. 2.Sao Paulo State University (UNESP)São VicenteBrazil

Personalised recommendations