PGC-1ɑ Mediated-EXOG, a Specific Repair Enzyme for Mitochondrial DNA, Plays an Essential Role in the Rotenone-Induced Neurotoxicity of PC12 Cells

Abstract

Mitochondria harbor small circular genomes (mtDNA) that encode 13 oxidative phosphorylation (OXPHOS) proteins, and types of damage to mtDNA may contribute to neuronal damage. Recent studies suggested that regulation of mtDNA repair proteins may be a potential strategy for treating neuronal damage. The mtDNA repair system contains its own repair enzymes and is independent from the nuclear DNA repair system. Endo/exonuclease G-like(EXOG) is a mitochondria-specific 5-exo/endonuclease required for repairing endogenous single-strand breaks (SSBs) in mtDNA. However, whether EXOG plays a key role in neuronal damage induced by rotenone remains unknown. Thus, in this study, we aimed to investigate the effect of EXOG on mtDNA repair and mitochondrial functional maintenance in rotenone-induced neurotoxicity. Our results indicated that rotenone influenced the expression and location of EXOG in PC12 cells. Meanwhile, after rotenone exposure, the expression was reduced for proteins responsible for mtDNA repair, including DNA polymerase γ (POLG), high-temperature requirement protease A2 (HtrA2), and the heat-shock factor 1-single-stranded DNA-binding protein 1 (HSF1-SSBP1) complex. Further analysis demonstrated that EXOG knockdown led to reduced mtDNA copy number and mtDNA transcript level and increased mtDNA deletion, which further aggravated the mtDNA damage and mitochondrial dysfunction under rotenone stress. In turn, EXOG overexpression protected PC12 cells from mtDNA damage and mitochondrial dysfunction induced by rotenone. As a result, EXOG knockdown reduced cell viability and tyrosine hydroxylase expression, while EXOG overexpression alleviated rotenone’s effect on cell viability and tyrosine hydroxylase expression in PC12 cells. Further, we observed that EXOG influenced mtDNA repair by regulating protein expression of the HSF1-SSBP1 complex and POLG. Furthermore, our study showed that PGC-1α upregulation with ZLN005 led to increased protein levels of EXOG, POLG, HSF1, and SSBP1, all of which contribute to mtDNA homeostasis. Therefore, PGC-1α may be involved in mtDNA repair through interacting with multiple mtDNA repair proteins, especially with the help of EXOG. In summary, EXOG regulation by PGC-1α plays an essential role in rotenone-induced neurotoxicity in PC12 cells. EXOG represents a protective effect strategy in PC12 cells exposed to rotenone.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Alencar RR, Batalha C, Freire TS, de Souza-Pinto NC (2019) Enzymology of mitochondrial DNA repair enzymes 45:257–287. https://doi.org/10.1016/bs.enz.2019.06.002

    CAS  Article  PubMed  Google Scholar 

  2. Bartz RR et al (2011) Staphylococcus aureus sepsis and mitochondrial accrual of the 8-oxoguanine DNA glycosylase DNA repair enzyme in mice. Am J Respir Crit Care Med 183:226–233. https://doi.org/10.1164/rccm.200911-1709OC

    CAS  Article  PubMed  Google Scholar 

  3. Bruni F, Polosa PL, Gadaleta MN, Cantatore P, Roberti M (2010) Nuclear respiratory factor 2 induces the expression of many but not all human proteins acting in mitochondrial DNA transcription and replication. J Biol Chem 285:3939–3948. https://doi.org/10.1074/jbc.M109.044305

    CAS  Article  PubMed  Google Scholar 

  4. Corona JC, Duchen MR (2015) PPARγ and PGC-1α as therapeutic targets in Parkinson’s. Neurochem Res 40:308–316. https://doi.org/10.1007/s11064-014-1377-0

    CAS  Article  PubMed  Google Scholar 

  5. Cymerman IA, Chung I, Beckmann BM, Bujnicki JM, Meiss G (2008) EXOG, a novel paralog of Endonuclease G in higher eukaryotes. Nuclei Acids Res 36:1369–1379. https://doi.org/10.1093/nar/gkm1169

    CAS  Article  Google Scholar 

  6. Fujimoto M, Nakai A (2010) The heat shock factor family and adaptation to proteotoxic stress. FEBS J 277:4112–4125. https://doi.org/10.1111/j.1742-4658.2010.07827.x

    CAS  Article  PubMed  Google Scholar 

  7. George J, Jacobs HT (2019) Minimal effects of spargel (PGC-1) overexpression in a mitochondrial disease model. Biol Open 8(7):bio042135. https://doi.org/10.1242/bio.042135

  8. Goldstein DS, Sullivan P, Cooney A, Jinsmaa Y, Kopin IJ, Sharabi Y (2015) Rotenone decreases intracellular aldehyde dehydrogenase activity: implications for the pathogenesis of Parkinson’s disease. J Neurochem 133:14–25. https://doi.org/10.1111/jnc.13042

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Goo HG, Jung MK, Han SS, Rhim H, Kang S (2013) HtrA2/Omi deficiency causes damage and mutation of mitochondrial DNA. Biochim Biophys Acta 1833:1866–1875. https://doi.org/10.1016/j.bbamcr.2013.03.016

    CAS  Article  PubMed  Google Scholar 

  10. Grima B, Lamouroux A, Boni C, Julien JF, Javoy-Agid F, Mallet J (1987) A single human gene encoding multiple tyrosine hydroxylases with different predicted functional characteristics. Nature 326:707–711. https://doi.org/10.1038/326707a0

    CAS  Article  PubMed  Google Scholar 

  11. Jang JY, Blum A, Liu J, Finkel T (2018) The role of mitochondria in aging. J Clin Invest 128:3662–3670. https://doi.org/10.1172/jci120842

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kim SB, Heo JI, Kim H, Kim KS (2019) Acetylation of PGC1α by histone deacetylase 1 downregulation is implicated in radiation-induced senescence of brain endothelial cells. J Gerontol A Biol Sci Med Sci 74:787–793. https://doi.org/10.1093/gerona/gly167

    CAS  Article  PubMed  Google Scholar 

  13. Li Y et al (2018) Age-associated decline in Nrf2 signaling and associated mtDNA damage may be involved in the degeneration of the auditory cortex: implications for central presbycusis. Int J Mol Med 42:3371–3385. https://doi.org/10.3892/ijmm.2018.3907

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Lu J et al (2018) Mitochondrial regulation by pyrroloquinoline quinone prevents rotenone-induced neurotoxicity in Parkinson’s disease models. Neurosci Lett 687:104–110. https://doi.org/10.1016/j.neulet.2018.09.031

    CAS  Article  PubMed  Google Scholar 

  15. Murphy MP, Hartley RC (2018) Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 17:865–886. https://doi.org/10.1038/nrd.2018.174

    CAS  Article  PubMed  Google Scholar 

  16. Mursaleen L, Somavarapu S, Zariwala MG (2020) Deferoxamine and curcumin loaded nanocarriers protect against rotenone-induced neurotoxicity. J Parkinsons Dis 10:99–111. https://doi.org/10.3233/jpd-191754

    CAS  Article  PubMed  Google Scholar 

  17. Nicklas JA, Brooks EM, Hunter TC, Single R, Branda RF (2004) Development of a quantitative PCR (TaqMan) assay for relative mitochondrial DNA copy number and the common mitochondrial DNA deletion in the rat. Environ Mol Mutagen 44:313–320. https://doi.org/10.1002/em.20050

    CAS  Article  PubMed  Google Scholar 

  18. Nierenberg AA, Ghaznavi SA, Sande Mathias I, Ellard KK, Janos JA, Sylvia LG (2018) Peroxisome proliferator-activated receptor gamma coactivator-1 alpha as a novel target for bipolar disorder and other neuropsychiatric disorders. Biol Psychiatry 83:761–769. https://doi.org/10.1016/j.biopsych.2017.12.014

    CAS  Article  PubMed  Google Scholar 

  19. Ozbey G, Nemutlu-Samur D, Parlak H, Yildirim S, Aslan M, Tanriover G, Agar A (2020) Metformin protects rotenone-induced dopaminergic neurodegeneration by reducing lipid peroxidation. Pharmacol Rep 72:1397–1406. https://doi.org/10.1007/s43440-020-00095-1

    CAS  Article  PubMed  Google Scholar 

  20. Paradies G, Paradies V, Ruggiero FM, Petrosillo G (2019) Role of cardiolipin in mitochondrial function and dynamics in health and disease: molecular and pharmacological aspects. Cells 8 https://doi.org/10.3390/cells8070728

  21. Peng K et al (2018) Mitochondrial ATP-sensitive potassium channel regulates mitochondrial dynamics to participate in neurodegeneration of Parkinson’s disease. Biochim Biophys Acta Mol Basis Dis 1864:1086–1103. https://doi.org/10.1016/j.bbadis.2018.01.013

    CAS  Article  PubMed  Google Scholar 

  22. Peng K et al (2017) The interaction of mitochondrial biogenesis and fission/fusion mediated by PGC-1α regulates rotenone-induced dopaminergic neurotoxicity. Mol Neurobiol 54:3783–3797. https://doi.org/10.1007/s12035-016-9944-9

    CAS  Article  PubMed  Google Scholar 

  23. Prieto I, Zambrano A, Laso J, Aranda A, Samper E, Monsalve M (2019) Early induction of senescence and immortalization in PGC-1α-deficient mouse embryonic fibroblasts. Free Radic Biol Med 138:23–32. https://doi.org/10.1016/j.freeradbiomed.2019.04.015

    CAS  Article  PubMed  Google Scholar 

  24. Quiros PM, Goyal A, Jha P, Auwerx J (2017) Analysis of mtDNA/nDNA ratio in mice. Curr Protoc Mouse Biol 7:47–54. https://doi.org/10.1002/cpmo.21

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Rahman S, Copeland WC (2019) POLG-related disorders and their neurological manifestations. Nat Rev Neurol 15:40–52. https://doi.org/10.1038/s41582-018-0101-0

    CAS  Article  PubMed  Google Scholar 

  26. Reeve A, Meagher M, Lax N, Simcox E, Hepplewhite P, Jaros E, Turnbull D (2013) The impact of pathogenic mitochondrial DNA mutations on substantia nigra neurons. J Neurosci 33:10790–10801. https://doi.org/10.1523/jneurosci.3525-12.2013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Saki M, Prakash A (2017) DNA damage related crosstalk between the nucleus and mitochondria. Free Radic Biol Med 107:216–227. https://doi.org/10.1016/j.freeradbiomed.2016.11.050

    CAS  Article  PubMed  Google Scholar 

  28. Sanders LH et al (2014) Mitochondrial DNA damage: molecular marker of vulnerable nigral neurons in Parkinson’s disease. Neurobiol Dis 70:214–223. https://doi.org/10.1016/j.nbd.2014.06.014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Sas K, Szabó E, Vécsei L (2018) Mitochondria, oxidative stress and the kynurenine system, with a focus on ageing and neuroprotection. Molecules 23(1):191. https://doi.org/10.3390/molecules23010191

    CAS  Article  PubMed Central  Google Scholar 

  30. Selvakumar GP et al (2018) Glia maturation factor dependent inhibition of mitochondrial PGC-1α triggers oxidative stress-mediated apoptosis in N27 rat dopaminergic neuronal cells. Mol Neurobiol 55:7132–7152. https://doi.org/10.1007/s12035-018-0882-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Sousa SC, Castilho RF (2005) Protective effect of melatonin on rotenone plus Ca2+-induced mitochondrial oxidative stress and PC12 cell death. Antioxid Redox Signal 7:1110–1116. https://doi.org/10.1089/ars.2005.7.1110

    CAS  Article  PubMed  Google Scholar 

  32. Suomalainen A, Battersby BJ (2018) Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nat Rev Mol Cell Biol 19:77–92. https://doi.org/10.1038/nrm.2017.66

    CAS  Article  PubMed  Google Scholar 

  33. Szczesny B, Olah G, Walker DK, Volpi E, Rasmussen BB, Szabo C, Mitra S (2013) Deficiency in repair of the mitochondrial genome sensitizes proliferating myoblasts to oxidative damage. PLoS ONE 8:e75201. https://doi.org/10.1371/journal.pone.0075201

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Tan K, Fujimoto M, Takii R, Takaki E, Hayashida N, Nakai A (2015) Mitochondrial SSBP1 protects cells from proteotoxic stresses by potentiating stress-induced HSF1 transcriptional activity. Nat Commun 6:6580. https://doi.org/10.1038/ncomms7580

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Tann AW, Boldogh I, Meiss G, Qian W, Van Houten B, Mitra S, Szczesny B (2011) Apoptosis induced by persistent single-strand breaks in mitochondrial genome: critical role of EXOG (5’-EXO/endonuclease) in their repair. J Biol Chem 286:31975–31983. https://doi.org/10.1074/jbc.M110.215715

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Tigchelaar W, De Jong AM, van Gilst WH, De Boer RA, Silljé HH (2016) In EXOG-depleted cardiomyocytes cell death is marked by a decreased mitochondrial reserve capacity of the electron transport chain. BioEssays S136–145. https://doi.org/10.1002/bies.201670914

  37. Trifunovic A et al (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–423. https://doi.org/10.1038/nature02517

    CAS  Article  PubMed  Google Scholar 

  38. Xu SC et al (2011) Nickel exposure induces oxidative damage to mitochondrial DNA in Neuro2a cells: the neuroprotective roles of melatonin. J Pineal Res 51:426–433. https://doi.org/10.1111/j.1600-079X.2011.00906.x

    CAS  Article  PubMed  Google Scholar 

  39. Zemskov EA et al (2019) Biomechanical forces and oxidative stress: implications for pulmonary vascular disease. Antioxid Redox Signal 31:819–842. https://doi.org/10.1089/ars.2018.7720

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Zhong Y et al (2011) Mitochondrial transcription factor A overexpression and base excision repair deficiency in the inner ear of rats with D-galactose-induced aging. FEBS J 278:2500–2510. https://doi.org/10.1111/j.1742-4658.2011.08176.x

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Sun Baofei and Mr. Yang Wang for technical assistance and statistics.

Funding

This work was supported by grants from the NSFC (Natural Science Foundation of China) (81973090, 81473006) to Yan Sai.

Author information

Affiliations

Authors

Contributions

Jingsong Xiao: Investigation, Writing-original draft, Visualization; Xunhu Dong and Kaige Peng: Investigation, Methodology, Software; Feng Ye, Jin Cheng and Guorong Dan: Formal analysis, Methodology, Software; Zhongmin Zou: Writing—review and editing, Supervision; Jia Cao and Yan Sai: Project administration, Conceptualization, Supervision, Validation, Writing—review and editing.

Corresponding author

Correspondence to Yan Sai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Ethics approval was obtained from the ethics committee of Third Military Medical University of China.

Consent for Publication

I certify that this manuscript is original and has not been published and will not be submitted elsewhere for publication while being considered by Journal of Molecular Neuroscience. No data have been fabricated or manipulated to support our conclusions.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Rotenone induced mitochondrial DNA damage through reducing mitochondrial DNA repair ability.

• EXOG maintained mitochondrial DNA and mitochondrial function homeostasis in PC12 cells after rotenone exposure.

• EXOG interacted with HSF1-SSBP1complex and POLG.

• PGC-1α regulated the expression of  EXOG, POLG and HSF1-SSBP1 complex.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Dong, X., Peng, K. et al. PGC-1ɑ Mediated-EXOG, a Specific Repair Enzyme for Mitochondrial DNA, Plays an Essential Role in the Rotenone-Induced Neurotoxicity of PC12 Cells. J Mol Neurosci (2021). https://doi.org/10.1007/s12031-020-01775-6

Download citation

Keywords

  • Mitochondrial DNA
  • EXOG
  • Rotenone
  • Mitochondrial homeostasis
  • PGC-1α