Knockdown of Amphiregulin Triggers Doxorubicin-Induced Autophagic and Apoptotic Death by Regulating Endoplasmic Reticulum Stress in Glioblastoma Cells

Abstract

Glioblastoma multiforme (GBM) is the most common type of malignant brain tumor. The present standard treatment for GBM has not been effective; therefore, the prognosis remains dramatically poor and prolonged survival after treatment is still limited. The new therapeutic strategies are urgently needed to improve the treatment efficiency. Doxorubicin (Dox) has been widely used in the treatment of many cancers for decades. In recent years, with the advancement of delivery technology, more and more research indicates that Dox has the opportunity to be used in the treatment of GBM. Amphiregulin (AREG), a ligand of the epidermal growth factor receptor (EGFR), has been reported to have oncogenic effects in many cancer cell types and is implicated in drug resistance. However, the biological function and molecular mechanism of AREG in Dox treatment of GBM are still unclear. Here, we demonstrate that knockdown of AREG can boost Dox-induced endoplasmic reticulum (ER) stress to trigger activation in both autophagy and apoptosis in GBM cells, ultimately leading to cell death. To explore the importance of AREG in the clinic, we used available bioinformatics tools and found AREG is highly expressed in GBM tumor tissues that are associated with poor survival. In addition, we also used antibody array analysis to dissect pathways that are likely to be activated by AREG. Taken together, our results revealed AREG can serve as a potential therapeutic target and a promising biomarker in GBM.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG, Manova-Todorova K, Leversha M, Hogg N, Seshan VE, Norton L, Brogi E, Massague J (2012) A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150:165–178. https://doi.org/10.1016/j.cell.2012.04.042

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bahar E, Kim JY, Yoon H (2019) Chemotherapy resistance explained through endoplasmic reticulum stress-dependent signaling. Cancers (Basel) 11. https://doi.org/10.3390/cancers11030338

    CAS  PubMed Central  Google Scholar 

  3. Bai LY, Chiu CF, Kapuriya NP, Shieh TM, Tsai YC, Wu CY, Sargeant AM, Weng JR (2015) BX795, a TBK1 inhibitor, exhibits antitumor activity in human oral squamous cell carcinoma through apoptosis induction and mitotic phase arrest. Eur J Pharmacol 769:287–296. https://doi.org/10.1016/j.ejphar.2015.11.032

    CAS  PubMed  Google Scholar 

  4. Benito R, Gil-Benso R, Quilis V, Perez M, Gregori-Romero M, Roldan P, Gonzalez-Darder J, Cerda-Nicolas M, Lopez-Gines C (2010) Primary glioblastomas with and without EGFR amplification: relationship to genetic alterations and clinicopathological features. Neuropathology 30:392–400. https://doi.org/10.1111/j.1440-1789.2009.01081.x

    PubMed  Google Scholar 

  5. Berasain C, Avila MA (2014) Amphiregulin. Semin Cell Dev Biol 28:31–41. https://doi.org/10.1016/j.semcdb.2014.01.005

    CAS  PubMed  Google Scholar 

  6. Bristol ML, Emery SM, Maycotte P, Thorburn A, Chakradeo S, Gewirtz DA (2013) Autophagy inhibition for chemosensitization and radiosensitization in cancer: do the preclinical data support this therapeutic strategy? J Pharmacol Exp Ther 344:544–552. https://doi.org/10.1124/jpet.112.199802

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Buondonno I, Gazzano E, Tavanti E, Chegaev K, Kopecka J, Fanelli M, Rolando B, Fruttero R, Gasco A, Hattinger C, Serra M, Riganti C (2019) Endoplasmic reticulum-targeting doxorubicin: a new tool effective against doxorubicin-resistant osteosarcoma. Cell Mol Life Sci 76:609–625. https://doi.org/10.1007/s00018-018-2967-9

    CAS  PubMed  Google Scholar 

  8. Busser B, Sancey L, Brambilla E, Coll JL, Hurbin A (2011) The multiple roles of amphiregulin in human cancer. Biochim Biophys Acta 1816:119–131. https://doi.org/10.1016/j.bbcan.2011.05.003

    CAS  PubMed  Google Scholar 

  9. Chakravarti A, Chakladar A, Delaney MA, Latham DE, Loeffler JS (2002) The epidermal growth factor receptor pathway mediates resistance to sequential administration of radiation and chemotherapy in primary human glioblastoma cells in a RAS-dependent manner. Cancer Res 62:4307–4315

    CAS  PubMed  Google Scholar 

  10. Chakravarty G, Mathur A, Mallade P, Gerlach S, Willis J, Datta A, Srivastav S, Abdel-Mageed AB, Mondal D (2016) Nelfinavir targets multiple drug resistance mechanisms to increase the efficacy of doxorubicin in MCF-7/Dox breast cancer cells. Biochimie 124:53–64. https://doi.org/10.1016/j.biochi.2016.01.014

    CAS  PubMed  Google Scholar 

  11. Chang KY, Huang CT, Hsu TI, Hsu CC, Liu JJ, Chuang CK, Hung JJ, Chang WC, Tsai KK, Chuang JY (2017) Stress stimuli induce cancer-stemness gene expression via Sp1 activation leading to therapeutic resistance in glioblastoma. Biochem Biophys Res Commun 493:14–19. https://doi.org/10.1016/j.bbrc.2017.09.095

    CAS  PubMed  Google Scholar 

  12. Chen JC, Lee IN, Huang C, Wu YP, Chung CY, Lee MH, Lin MH, Yang JT (2019) Valproic acid-induced amphiregulin secretion confers resistance to temozolomide treatment in human glioma cells. BMC Cancer 19:756. https://doi.org/10.1186/s12885-019-5843-6

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gaelzer MM, Santos MSD, Coelho BP, de Quadros AH, Simao F, Usach V, Guma FCR, Setton-Avruj P, Lenz G, Salbego CG (2017) Hypoxic and reoxygenated microenvironment: stemness and differentiation state in glioblastoma. Mol Neurobiol 54:6261–6272. https://doi.org/10.1007/s12035-016-0126-6

    CAS  PubMed  Google Scholar 

  14. He Y, Su J, Lan B, Gao Y, Zhao J (2019) Targeting off-target effects: endoplasmic reticulum stress and autophagy as effective strategies to enhance temozolomide treatment. OncoTargets Therapy 12:1857–1865. https://doi.org/10.2147/ott.S194770

    CAS  PubMed  Google Scholar 

  15. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13:89–102. https://doi.org/10.1038/nrm3270

    CAS  PubMed  Google Scholar 

  16. Huynh TT, Lin CM, Lee WH, Wu AT, Lin YK, Lin YF, Yeh CT, Wang LS (2015) Pterostilbene suppressed irradiation-resistant glioma stem cells by modulating GRP78/miR-205 axis. J Nutr Biochem 26:466–475. https://doi.org/10.1016/j.jnutbio.2014.11.015

    CAS  PubMed  Google Scholar 

  17. Joshi AD, Loilome W, Siu IM, Tyler B, Gallia GL, Riggins GJ (2012) Evaluation of tyrosine kinase inhibitor combinations for glioblastoma therapy. PLoS One 7:e44372. https://doi.org/10.1371/journal.pone.0044372

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee DH, Kim S, Nam KS (2014) Protective effects of deep sea water against doxorubicin-induced cardiotoxicity in H9c2 cardiac muscle cells. Int J Oncol 45:2569–2575. https://doi.org/10.3892/ijo.2014.2666

    CAS  PubMed  Google Scholar 

  19. Lee WS, Yoo WH, Chae HJ (2015a) ER stress and autophagy. Curr Mol Med 15:735–745

    CAS  PubMed  Google Scholar 

  20. Lee D, Sun S, Zhang XQ, Zhang PD, Ho AS, Kiang KM, Fung CF, Lui WM, Leung GK (2015b) MicroRNA-210 and endoplasmic reticulum chaperones in the regulation of chemoresistance in glioblastoma. J Cancer 6:227–232. https://doi.org/10.7150/jca.10765

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu B, Guo Z, Dong H, Daofeng T, Cai Q, Ji B, Zhang S, Wu L, Wang J, Wang L, Zhu X, Liu Y, Chen Q (2015) LRIG1, human EGFR inhibitor, reverses multidrug resistance through modulation of ABCB1 and ABCG2. Brain Res 1611:93–100. https://doi.org/10.1016/j.brainres.2015.03.023

    CAS  PubMed  Google Scholar 

  22. Lorente M, Carracedo A, Torres S, Natali F, Egia A, Hernandez-Tiedra S, Salazar M, Blazquez C, Guzman M, Velasco G (2009) Amphiregulin is a factor for resistance of glioma cells to cannabinoid-induced apoptosis. Glia 57:1374–1385. https://doi.org/10.1002/glia.20856

    PubMed  Google Scholar 

  23. Lundy DJ, Lee KJ, Peng IC, Hsu CH, Lin JH, Chen KH, Tien YW, Hsieh PCH (2019) Inducing a transient increase in blood-brain barrier permeability for improved liposomal drug therapy of glioblastoma multiforme. ACS Nano 13:97–113. https://doi.org/10.1021/acsnano.8b03785

    CAS  PubMed  Google Scholar 

  24. Marinello J, Delcuratolo M, Capranico G (2018) Anthracyclines as topoisomerase II poisons: from early studies to new perspectives. Int J Mol Sci 19. https://doi.org/10.3390/ijms19113480

    PubMed Central  Google Scholar 

  25. Maurel M, McGrath EP, Mnich K, Healy S, Chevet E, Samali A (2015) Controlling the unfolded protein response-mediated life and death decisions in cancer. Semin Cancer Biol 33:57–66. https://doi.org/10.1016/j.semcancer.2015.03.003

    CAS  PubMed  Google Scholar 

  26. Milman N, Ginini L, Gil Z (2019) Exosomes and their role in tumorigenesis and anticancer drug resistance. Drug Resist Updat 45:1–12. https://doi.org/10.1016/j.drup.2019.07.003

    PubMed  Google Scholar 

  27. Munoz JL, Rodriguez-Cruz V, Greco SJ, Nagula V, Scotto KW, Rameshwar P (2014a) Temozolomide induces the production of epidermal growth factor to regulate MDR1 expression in glioblastoma cells. Mol Cancer Ther 13:2399–2411. https://doi.org/10.1158/1535-7163.mct-14-0011

    CAS  PubMed  Google Scholar 

  28. Munoz JL, Rodriguez-Cruz V, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P (2014b) Temozolomide resistance in glioblastoma cells occurs partly through epidermal growth factor receptor-mediated induction of connexin 43. Cell Death Dis 5:e1145. https://doi.org/10.1038/cddis.2014.111

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nagelkerke A, Bussink J, Sweep FC, Span PN (2014) The unfolded protein response as a target for cancer therapy. Biochim Biophys Acta 1846:277–284. https://doi.org/10.1016/j.bbcan.2014.07.006

    CAS  PubMed  Google Scholar 

  30. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M, Tanii I, Yoshinaga K, Shiosaka S, Hammarback JA, Urano F, Imaizumi K (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26:9220–9231. https://doi.org/10.1128/mcb.01453-06

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM, Wrensch MR, Barnholtz-Sloan JS (2014) The epidemiology of glioma in adults: a “state of the science” review. Neuro-oncology 16:896–913. https://doi.org/10.1093/neuonc/nou087

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Prados MD, Chang SM, Butowski N, DeBoer R, Parvataneni R, Carliner H, Kabuubi P, Ayers-Ringler J, Rabbitt J, Page M, Fedoroff A, Sneed PK, Berger MS, McDermott MW, Parsa AT, Vandenberg S, James CD, Lamborn KR, Stokoe D, Haas-Kogan DA (2009) Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma. J Clin Oncol 27:579–584. https://doi.org/10.1200/jco.2008.18.9639

    CAS  PubMed  Google Scholar 

  33. Pyrko P, Kardosh A, Wang W, Xiong W, Schonthal AH, Chen TC (2007a) HIV-1 protease inhibitors nelfinavir and atazanavir induce malignant glioma death by triggering endoplasmic reticulum stress. Cancer Res 67:10920–10928. https://doi.org/10.1158/0008-5472.Can-07-0796

    CAS  PubMed  Google Scholar 

  34. Pyrko P, Schonthal AH, Hofman FM, Chen TC, Lee AS (2007b) The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res 67:9809–9816. https://doi.org/10.1158/0008-5472.Can-07-0625

    CAS  PubMed  Google Scholar 

  35. Salaroglio IC, Panada E, Moiso E, Buondonno I, Provero P, Rubinstein M, Kopecka J, Riganti C (2017) PERK induces resistance to cell death elicited by endoplasmic reticulum stress and chemotherapy. Mol Cancer 16:91. https://doi.org/10.1186/s12943-017-0657-0

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Schwechheimer K, Huang S, Cavenee WK (1995) EGFR gene amplification--rearrangement in human glioblastomas. Int J Cancer 62:145–148

    CAS  PubMed  Google Scholar 

  37. Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17:20–37. https://doi.org/10.1038/nrc.2016.108

    CAS  Google Scholar 

  38. Shinojima N, Tada K, Shiraishi S, Kamiryo T, Kochi M, Nakamura H, Makino K, Saya H, Hirano H, Kuratsu J, Oka K, Ishimaru Y, Ushio Y (2003) Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 63:6962–6970

    CAS  PubMed  Google Scholar 

  39. Siveen KS, Raza A, Ahmed EI, Khan AQ, Prabhu KS, Kuttikrishnan S, Mateo JM, Zayed H, Rasul K, Azizi F, Dermime S, Steinhoff M, Uddin S (2019) The role of extracellular vesicles as modulators of the tumor microenvironment, metastasis and drug resistance in colorectal cancer. Cancers (Basel) 11. https://doi.org/10.3390/cancers11060746

    CAS  PubMed Central  Google Scholar 

  40. Song S, Tan J, Miao Y, Li M, Zhang Q (2017) Crosstalk of autophagy and apoptosis: involvement of the dual role of autophagy under ER stress. J Cell Physiol 232:2977–2984. https://doi.org/10.1002/jcp.25785

    CAS  PubMed  Google Scholar 

  41. Steponaitis G, Kazlauskas A, Skiriute D, Vaitkiene P, Skauminas K, Tamasauskas A (2019) Significance of amphiregulin (AREG) for the outcome of low and high grade astrocytoma patients. J Cancer 10:1479–1488. https://doi.org/10.7150/jca.29282

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT, Cooper ZA, Chapman PB, Solit DB, Ribas A, Lo RS, Flaherty KT, Ogino S, Wargo JA, Golub TR (2012) Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487:500–504. https://doi.org/10.1038/nature11183

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. https://doi.org/10.1056/NEJMoa043330

    CAS  PubMed  Google Scholar 

  44. Urra H, Dufey E, Avril T, Chevet E, Hetz C (2016) Endoplasmic reticulum stress and the hallmarks of cancer. Trends Cancer 2:252–262. https://doi.org/10.1016/j.trecan.2016.03.007

    PubMed  Google Scholar 

  45. Verma J, Van Veen Henk A, Lal S, Van Noorden Cornelis JF (2015) Delivery and cytotoxicity of doxorubicin and temozolomide to primary glioblastoma cells using gold nanospheres and gold nanorods. Eur J Nanomed 8:49–60

    Google Scholar 

  46. Villodre ES, Kipper FC, Silva AO, Lenz G, Lopez P (2018) Low dose of doxorubicin potentiates the effect of temozolomide in glioblastoma cells. Mol Neurobiol 55:4185–4194. https://doi.org/10.1007/s12035-017-0611-6

    CAS  PubMed  Google Scholar 

  47. Wang M, Law ME, Castellano RK, Law BK (2018) The unfolded protein response as a target for anticancer therapeutics. Crit Rev Oncol Hematol 127:66–79. https://doi.org/10.1016/j.critrevonc.2018.05.003

    PubMed  Google Scholar 

  48. Wesseling P, Capper D (2018) WHO 2016 Classification of gliomas. Neuropathol Appl Neurobiol 44:139–150. https://doi.org/10.1111/nan.12432

    CAS  PubMed  Google Scholar 

  49. Whittle JR, Lickliter JD, Gan HK, Scott AM, Simes J, Solomon BJ, MacDiarmid JA, Brahmbhatt H, Rosenthal MA (2015) First in human nanotechnology doxorubicin delivery system to target epidermal growth factor receptors in recurrent glioblastoma. J Clin Neurosci 22:1889–1894. https://doi.org/10.1016/j.jocn.2015.06.005

    CAS  PubMed  Google Scholar 

  50. Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, Peng J, Lin E, Wang Y, Sosman J, Ribas A, Li J, Moffat J, Sutherlin DP, Koeppen H, Merchant M, Neve R, Settleman J (2012) Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487:505–509. https://doi.org/10.1038/nature11249

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wolff JE, Trilling T, Molenkamp G, Egeler RM, Jurgens H (1999) Chemosensitivity of glioma cells in vitro: a meta analysis. J Cancer Res Clin Oncol 125:481–486

    CAS  PubMed  Google Scholar 

  52. Yeom SY, Nam DH, Park C (2014) RRAD promotes EGFR-mediated STAT3 activation and induces temozolomide resistance of malignant glioblastoma. Mol Cancer Ther 13:3049–3061. https://doi.org/10.1158/1535-7163.mct-14-0244

    CAS  PubMed  Google Scholar 

  53. Zahonero C, Sanchez-Gomez P (2014) EGFR-dependent mechanisms in glioblastoma: towards a better therapeutic strategy. Cell Mol Life Sci. https://doi.org/10.1007/s00018-014-1608-1

    CAS  PubMed  Google Scholar 

  54. Zhan L, Zheng L, Hosoi T, Okuma Y, Nomura Y (2015) Stress-induced neuroprotective effects of epiregulin and amphiregulin. PLoS One 10:e0118280. https://doi.org/10.1371/journal.pone.0118280

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Grants CMRPG6F0351, CMRPG6F0352, and CMRPG6F0353 from Chang Gung Medical Research Council, Taiwan; the Ministry of Science and Technology (Grant no. 107-2314-B-415-002); and Grant no. 107-CCH-HCR-046 from Changhua Christian Hospital, Taiwan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jui-Chieh Chen.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Ethics Approval and Consent to Participate

Not applicable.

Patient Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, I., Yang, J., Hsieh, M. et al. Knockdown of Amphiregulin Triggers Doxorubicin-Induced Autophagic and Apoptotic Death by Regulating Endoplasmic Reticulum Stress in Glioblastoma Cells. J Mol Neurosci (2020). https://doi.org/10.1007/s12031-020-01598-5

Download citation

Keywords

  • Amphiregulin
  • Glioblastoma multiforme (GBM)
  • Doxorubicin
  • Drug resistance
  • Endoplasmic reticulum (ER) stress
  • Autophagy