Identification of Core Genes and Pathways in Medulloblastoma by Integrated Bioinformatics Analysis

Abstract

Medulloblastoma (MB) is one of the most common intracranial malignancies in children. The present study applied integrated bioinformatics to identify potential core genes associated with the pathogenesis of MB and reveal potential molecular mechanisms. Through the integrated analysis of multiple data sets from the Gene Expression Omnibus (GEO), 414 differentially expressed genes (DEGs) were identified. Combining the protein–protein interaction (PPI) network analysis with gene set enrichment analysis (GSEA), eight core genes, including CCNA2, CCNB1, CCNB2, AURKA, CDK1, MAD2L1, BUB1B, and RRM2, as well as four core pathways, including “cell cycle”, “oocyte meiosis”, “p53 pathway” and “DNA replication” were selected. In independent data sets, the core genes showed superior diagnostic values and significant prognostic correlations. Moreover, in the pan-caner data of the cancer genome atlas (TCGA), the core genes were also widely abnormally expressed. In conclusion, this study identified core genes and pathways of MB through integrated analysis to deepen the understanding of the molecular mechanisms underlying the MB and provide potential targets and pathways for diagnosis and treatment of MB.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Amani V, Donson AM, Lummus SC et al (2017) Characterization of 2 novel ependymoma cell lines with chromosome 1q gain derived from posterior fossa tumors of childhood. J Neuropathol Exp Neurol. https://doi.org/10.1093/jnen/nlx040

  2. Ando K, Kakeji Y, Kitao H et al (2010) High expression of BUBR1 is one of the factors for inducing DNA aneuploidy and progression in gastric cancer. Cancer Sci 101:639–645. https://doi.org/10.1111/j.1349-7006.2009.01457.x

    CAS  Article  PubMed  Google Scholar 

  3. Archer TC, Mahoney EL, Pomeroy SL (2017) Medulloblastoma: molecular classification-based personal therapeutics. Neurotherapeutics 14:265–273. doi.org/10.1007/s13311-017-0526-y.

  4. Bader GD, Hogue CWV (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. https://doi.org/10.1186/1471-2105-4-2

  5. Baker DJ, Dawlaty MM, Wijshake T et al (2013) Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan. Nat Cell Biol 15:96–102. https://doi.org/10.1038/ncb2643

    CAS  Article  PubMed  Google Scholar 

  6. Bartlett F, Kortmann R, Saran F (2013) Medulloblastoma. Clin Oncol 25:36–45. https://doi.org/10.1016/j.clon.2012.09.008

    CAS  Article  Google Scholar 

  7. Birks DK, Donson AM, Patel PR et al (2013) Pediatric rhabdoid tumors of kidney and brain show many differences in gene expression but share dysregulation of cell cycle and epigenetic effector genes. Pediatr Blood Cancer 60:1095–1102. https://doi.org/10.1002/pbc.24481

    Article  PubMed  Google Scholar 

  8. Cavalli FMG, Remke M, Rampasek L et al (2017) Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell 31:737-754.e6. https://doi.org/10.1016/j.ccell.2017.05.005

  9. Chin CH, Chen SH, Wu HH et al (2014) cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. https://doi.org/10.1186/1752-0509-8-S4-S11

  10. Choi J-W, Kim Y, Lee J-H, Kim Y-S (2013) High expression of spindle assembly checkpoint proteins CDC20 and MAD2 is associated with poor prognosis in urothelial bladder cancer. Virchows Arch 463:681–687. https://doi.org/10.1007/s00428-013-1473-6

    Article  PubMed  Google Scholar 

  11. D’Angiolella V, Donato V, Forrester FM et al (2012) Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell 149:1023–1034. https://doi.org/10.1016/j.cell.2012.03.043

    CAS  Article  PubMed  Google Scholar 

  12. de Bont JM, Kros JM, Passier MMCJ et al (2008) Differential expression and prognostic significance of SOX genes in pediatric medulloblastoma and ependymoma identified by microarray analysis. Neuro-Oncology 10:648–660. https://doi.org/10.1215/15228517-2008-032

    CAS  Article  PubMed  Google Scholar 

  13. Deng Y-R, Chen X-J, Chen W et al (2019) Sp1 contributes to radioresistance of cervical cancer through targeting G2/M cell cycle checkpoint CDK1. Cancer Manag Res 11:5835–5844. https://doi.org/10.2147/CMAR.S200907

    CAS  Article  PubMed  Google Scholar 

  14. Enserink JM, Kolodner RD (2010) An overview of Cdk1-controlled targets and processes. Cell Div 5:11. https://doi.org/10.1186/1747-1028-5-11

  15. Fang G, Yu H, Kirschner MW (1998) The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev 12:1871–1883. https://doi.org/10.1101/gad.12.12.1871

    CAS  Article  PubMed  Google Scholar 

  16. Fang Y, Yu H, Liang X et al (2014) Chk1-induced CCNB1 overexpression promotes cell proliferation and tumor growth in human colorectal cancer. Cancer Biol Therapy 15:1268–1279. https://doi.org/10.4161/cbt.29691

    CAS  Article  Google Scholar 

  17. Ferrandina G, Mey V, Nannizzi S et al (2010) Expression of nucleoside transporters, deoxycitidine kinase, ribonucleotide reductase regulatory subunits, and gemcitabine catabolic enzymes in primary ovarian cancer. Cancer Chemother Pharmacol. https://doi.org/10.1007/s00280-009-1073-y

  18. Fourest-Lieuvin A, Peris L, Gache V et al (2006) Microtubule regulation in mitosis: tubulin phosphorylation by the cyclin-dependent kinase Cdk1. Mol Biol Cell 17:1041–1050. /https://doi.org/10.1091/mbc.e05-07-0621

  19. Furlong F, Fitzpatrick P, O’Toole S et al (2012) Low MAD2 expression levels associate with reduced progression-free survival in patients with high-grade serous epithelial ovarian cancer. J Pathol 226:746–755. https://doi.org/10.1002/path.3035

    CAS  Article  PubMed  Google Scholar 

  20. Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) Affy - analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. https://doi.org/10.1093/bioinformatics/btg405

  21. Gerber NU, Mynarek M, von Hoff K et al (2014) Recent developments and current concepts in medulloblastoma. Cancer Treat Rev 40:356–365. https://doi.org/10.1016/j.ctrv.2013.11.010

    CAS  Article  PubMed  Google Scholar 

  22. Gilbertson RJ (2004) Medulloblastoma: signalling a change in treatment. Lancet Oncol 5:209–218. https://doi.org/10.1016/S1470-2045(04)01424-X

    Article  PubMed  Google Scholar 

  23. Griesinger AM, Birks DK, Donson AM et al (2013) Characterization of distinct Immunophenotypes across Pediatric brain tumor types. J Immunol 191:4880–4888. https://doi.org/10.4049/jimmunol.1301966

    CAS  Article  PubMed  Google Scholar 

  24. Griesinger AM, Josephson RJ, Donson AM et al (2015) Interleukin-6/STAT3 pathway signaling drives an inflammatory phenotype in group a ependymoma. Cancer Immunol Res. https://doi.org/10.1158/2326-6066.CIR-15-0061

  25. Gump JM, Donson AM, Birks DK et al (2015) Identification of targets for rational pharmacological therapy in childhood craniopharyngioma. Acta Neuropathol Commun 3:30. https://doi.org/10.1186/s40478-015-0211-5

    CAS  Article  PubMed  Google Scholar 

  26. Herrick J, Sclavi B (2007) Ribonucleotide reductase and the regulation of DNA replication: an old story and an ancient heritage. Mol Microbiol 63:22–34. https://doi.org/10.1111/j.1365-2958.2006.05493.x

    CAS  Article  PubMed  Google Scholar 

  27. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. https://doi.org/10.1038/nprot.2008.211

    CAS  Article  Google Scholar 

  28. Katsha A, Arras J, Soutto M et al (2014) AURKA regulates JAK2-STAT3 activity in human gastric and esophageal cancers. Mol Oncol 8:1419–1428. https://doi.org/10.1016/j.molonc.2014.05.012

    CAS  Article  PubMed  Google Scholar 

  29. Ko E, Kim Y, Cho EY et al (2013) Synergistic effect of Bcl-2 and cyclin A2 on adverse recurrence-free survival in stage I non-small cell lung cancer. Ann Surg Oncol 20:1005–1012. https://doi.org/10.1245/s10434-012-2727-2

    Article  PubMed  Google Scholar 

  30. Kolde R, Laur S, Adler P, Vilo J (2012) Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics 28:573–580. https://doi.org/10.1093/bioinformatics/btr709

    CAS  Article  PubMed  Google Scholar 

  31. Kool M, Jones DTW, Jäger N et al (2014) Genome sequencing of SHH Medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell 25:393–405. https://doi.org/10.1016/j.ccr.2014.02.004

    CAS  Article  PubMed  Google Scholar 

  32. Leek JT, Johnson WE, Parker HS et al (2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28:882–883. https://doi.org/10.1093/bioinformatics/bts034

    CAS  Article  PubMed  Google Scholar 

  33. Li G-Q (2004) Mad2 and p27 expression profiles in colorectal cancer and its clinical significance. World J Gastroenterol 10:3218. https://doi.org/10.3748/wjg.v10.i21.3218

    CAS  Article  PubMed  Google Scholar 

  34. Li G, Liu X, Zhang D et al (2011) The expression and significance of cyclin B1 and survivin in human non-small cell lung cancer. Chin-Ger J Clin Oncol 10:192–197. https://doi.org/10.1007/s10330-011-0771-1

    CAS  Article  Google Scholar 

  35. Loog M, Morgan DO (2005) Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature 434:104–108. https://doi.org/10.1038/nature03329

    CAS  Article  PubMed  Google Scholar 

  36. Lou X, Fang G, Coldiron M et al (2000) Structure of the Mad2 spindle assembly checkpoint protein and its interaction with Cdc20. Nat Struct Biol. https://doi.org/10.1038/73338

  37. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  Google Scholar 

  38. Manni I, Mazzaro G, Gurtner A et al (2001) NF-Y mediates the transcriptional inhibition of the cyclin B1, cyclin B2, and cdc25C promoters upon induced G 2 arrest. J Biol Chem 276:5570–5576. https://doi.org/10.1074/jbc.M006052200

    CAS  Article  PubMed  Google Scholar 

  39. Mansouri N, Movafagh A, Sayad A et al (2016) Targeting of BUB1b gene expression in sentinel lymph node biopsies of invasive breast cancer in Iranian female patients. Asian Pac J Cancer Prev 17:317–321. https://doi.org/10.7314/APJCP.2016.17.S3.317

    Article  PubMed  Google Scholar 

  40. Mathur R, Rotroff D, Ma J et al (2018) Gene set analysis methods: a systematic comparison. BioData Mining 11:8. https://doi.org/10.1186/s13040-018-0166-8

    CAS  Article  PubMed  Google Scholar 

  41. Morikawa T, Maeda D, Kume H et al (2010) Ribonucleotide reductase M2 subunit is a novel diagnostic marker and a potential therapeutic target in bladder cancer. Histopathology 57:885–892. https://doi.org/10.1111/j.1365-2559.2010.03725.x

    Article  PubMed  Google Scholar 

  42. Mukherjee A, Joseph C, Craze M et al (2015) The role of BUB and CDC proteins in low-grade breast cancers. Lancet. https://doi.org/10.1016/s0140-6736(15)60387-7

  43. Nigg EA (2002) Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer 2:815–825. https://doi.org/10.1038/nrc924

    CAS  Article  PubMed  Google Scholar 

  44. Nishida T, Matsushima T, Tsujimoto M et al (2015) Cyclin-dependent kinase activity correlates with the prognosis of patients who have gastrointestinal stromal tumors. Ann Surg Oncol 22:3565–3573. https://doi.org/10.1245/s10434-015-4438-y

    Article  PubMed  Google Scholar 

  45. Northcott PA, Buchhalter I, Morrissy AS et al (2017) The whole-genome landscape of medulloblastoma subtypes. Nature 547:311–317. https://doi.org/10.1038/nature22973

    CAS  Article  PubMed  Google Scholar 

  46. Northcott PA, Jones DTW, Kool M et al (2012a) Medulloblastomics: the end of the beginning. Nat Rev Cancer 12:818–834. https://doi.org/10.1038/nrc3410

    CAS  Article  PubMed  Google Scholar 

  47. Northcott PA, Robinson GW, Kratz CP et al (2019) Medulloblastoma. Nat Rev Dis Primers 5:11. https://doi.org/10.1038/s41572-019-0063-6

    Article  PubMed  Google Scholar 

  48. Northcott PA, Rutka JT, Taylor MD (2010) Genomics of medulloblastoma: from Giemsa-banding to next-generation sequencing in 20 years. Neurosurg Focus 28:E6. https://doi.org/10.3171/2009.10.FOCUS09218

    Article  PubMed  Google Scholar 

  49. Northcott PA, Shih DJH, Peacock J et al (2012b) Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 488:49–56. https://doi.org/10.1038/nature11327

    CAS  Article  PubMed  Google Scholar 

  50. Park AK, Lee JY, Cheong H et al (2019) Subgroup-specific prognostic signaling and metabolic pathways in pediatric medulloblastoma. BMC Cancer 19:571. https://doi.org/10.1186/s12885-019-5742-x

    CAS  Article  PubMed  Google Scholar 

  51. Peng S, Yang S, Bo X, Li F (2017) paraGSEA: a scalable approach for large-scale gene expression profiling. Nucleic Acids Res 45:e155–e155. https://doi.org/10.1093/nar/gkx679

    CAS  Article  PubMed  Google Scholar 

  52. Rahman MA, Amin ARMR, Wang D et al (2013) RRM2 regulates Bcl-2 in head and neck and lung cancers: a potential target for cancer therapy. Clin Cancer Res 19:3416–3428. https://doi.org/10.1158/1078-0432.CCR-13-0073

    CAS  Article  PubMed  Google Scholar 

  53. Rasmussen RD, Gajjar MK, Tuckova L et al (2016) BRCA1-regulated RRM2 expression protects glioblastoma cells from endogenous replication stress and promotes tumorigenicity. Nat Commun 7:1–14. https://doi.org/10.1038/ncomms13398

    CAS  Article  Google Scholar 

  54. Ringer L, Sirajuddin P, Heckler M et al (2011) VMY-1-103 is a novel CDK inhibitor that disrupts chromosome organization and delays metaphase progression in medulloblastoma cells. Cancer Biol Therapy 12:818–826. https://doi.org/10.4161/cbt.12.9.17682

    CAS  Article  Google Scholar 

  55. Ritchie ME, Phipson B, Wu D et al (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. https://doi.org/10.1093/nar/gkv007

  56. Roskoski R (2016) Cyclin-dependent protein kinase inhibitors including palbociclib as anticancer drugs. Pharmacol Res 107:249–275. https://doi.org/10.1016/j.phrs.2016.03.012

    CAS  Article  PubMed  Google Scholar 

  57. Schnepp RW, Khurana P, Attiyeh EF et al (2015) A LIN28B-RAN-AURKA Signaling network promotes neuroblastoma tumorigenesis. Cancer Cell 28:599–609. https://doi.org/10.1016/j.ccell.2015.09.012

    CAS  Article  PubMed  Google Scholar 

  58. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. https://doi.org/10.1101/gr.1239303

  59. Soria JC, Se Jin Jang, Khuri FR, et al (2000) Overexpression of cyclin B1 in early-stage non-small cell lung cancer and its clinical implication. Cancer Res 60:4000-4

  60. Souglakos J, Boukovinas I, Taron M et al (2008) Ribonucleotide reductase subunits M1 and M2 mRNA expression levels and clinical outcome of lung adenocarcinoma patients treated with docetaxel/gemcitabine. Br J Cancer 98:1710–1715. https://doi.org/10.1038/sj.bjc.6604344

    CAS  Article  PubMed  Google Scholar 

  61. Szklarczyk D, Franceschini A, Wyder S et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. https://doi.org/10.1093/nar/gku1003

  62. Tang Z, Li C, Kang B et al (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45:W98–W102. https://doi.org/10.1093/nar/gkx247

    CAS  Article  PubMed  Google Scholar 

  63. Volm M, Koomägi R, Mattern J, Stammler G (1997) Cyclin a is associated with an unfavourable outcome in patients with non-small-cell lung carcinomas. Br J Cancer 75:1774–1778. https://doi.org/10.1038/bjc.1997.302

    CAS  Article  PubMed  Google Scholar 

  64. Waszak SM, Northcott PA, Buchhalter I et al (2018) Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. The Lancet Oncology 19:785–798. https://doi.org/10.1016/S1470-2045(18)30242-0

    CAS  Article  PubMed  Google Scholar 

  65. Yamamoto Y, Matsuyama H, Chochi Y et al (2007) Overexpression of BUBR1 is associated with chromosomal instability in bladder cancer. Cancer Genet Cytogenet 174:42–47. https://doi.org/10.1016/j.cancergencyto.2006.11.012

    CAS  Article  PubMed  Google Scholar 

  66. Yang B, Dai J, Pan Y et al (2019) Examining the biomarkers and molecular mechanisms of medulloblastoma based on bioinformatics analysis. Oncol Lett 18:433–441. https://doi.org/10.3892/ol.2019.10314

    CAS  Article  PubMed  Google Scholar 

  67. Yuan J, Llamas Luceño N, Sander B, Golas MM (2017) Synergistic anti-cancer effects of epigenetic drugs on medulloblastoma cells. Cell Oncol 40:263–279. https://doi.org/10.1007/s13402-017-0319-7

    CAS  Article  Google Scholar 

  68. Zhang H, Zhang X, Li X et al (2019) Effect of CCNB1 silencing on cell cycle, senescence, and apoptosis through the p53 signaling pathway in pancreatic cancer. J Cell Physiol 234:619–631. https://doi.org/10.1002/jcp.26816

    CAS  Article  Google Scholar 

  69. Zhao J, Han S-X, Ma J-L et al (2013) The role of CDK1 in apoptin-induced apoptosis in hepatocellular carcinoma cells. Oncol Rep 30:253–259. https://doi.org/10.3892/or.2013.2426

    CAS  Article  PubMed  Google Scholar 

  70. Zhong W, Fu X, Chen G et al (2016) Overexpression of BUB1B contributes to progression of prostate cancer and predicts poor outcome in patients with prostate cancer. OncoTargets and Therapy 2211. https://doi.org/10.2147/OTT.S101994

  71. Zhou B, Liu X, Mo X et al (2003) The human ribonucleotide reductase subunit hRRM2 complements p53R2 in response to UV-induced DNA repair in cells with mutant p53. Cancer Res 63:6583–6594

    CAS  PubMed  Google Scholar 

  72. Zhou L, Li J, Zhao Y-P et al (2014) The prognostic value of cyclin B1 in pancreatic cancer. Med Oncol 31:107. https://doi.org/10.1007/s12032-014-0107-4

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

Y. G., C. Y., and H. Z. conceived and designed this study. Y. G., P. H., and W. N., collected and analyzed the data. All authors reviewed, edited, and approved the manuscript.

Corresponding authors

Correspondence to Hongwei Zhang or Chunjiang Yu.

Ethics declarations

Conflict of Interest

The authors report no conflicts of interest in this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Huang, P., Ning, W. et al. Identification of Core Genes and Pathways in Medulloblastoma by Integrated Bioinformatics Analysis. J Mol Neurosci (2020). https://doi.org/10.1007/s12031-020-01556-1

Download citation

Keywords

  • Medulloblastoma
  • Bioinformatics analysis
  • Differentially expressed genes
  • Pathways
  • GEO
  • TCGA