miR-129-5p Alleviates Neuropathic Pain Through Regulating HMGB1 Expression in CCI Rat Models

Abstract

Recently, microRNAs are reported to be participated in the development of pain and persistence of neuropathic and inflammatory pain in animal models. Here, we characterized the functional role of miR-129-5p in pain processing in chronic constriction injury (CCI) rat models. Bilateral CCI operation was used to generate neuropathic pain rat model. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were used to assess pain-related behaviors. Gene expression was evaluated using qRT-PCR, luciferase assay, western blotting, and enzyme-linked immunosorbent assay. Compared with the control rats, expression level of miR-129-5p was downregulated significantly over time in CCI rats post operation. Interestingly, downregulation of miR-129-5p in CCI rats was correlated with increased proinflammatory cytokine expression and pain-related behaviors. Furthermore, we found that miR-129-5p alleviated neuropathic pain through downregulating high mobility group protein B1 (HMGB1) expression in CCI rats as overexpression of miR-129-5p suppressed expression of both HMGB1 and proinflammatory cytokine and alleviated pain sensation in CCI rats. In summary, our results show that alteration in miR-129-5p expression contributes to pain processing in our CCI pain rat model, suggesting miR-129-5p could be a causal factor in neuropathic pain and serve as a promising potential biomarker and therapeutic target for neuropathic pain.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Agalave NM, Svensson CI (2015) Extracellular high-mobility group box 1 protein (HMGB1) as a mediator of persistent pain. Mol Med 20:569–578. https://doi.org/10.2119/molmed.2014.00176

    Article  PubMed  PubMed Central  Google Scholar 

  2. Attal N (2000) Chronic neuropathic pain: mechanisms and treatment. Clin J Pain 16:S118–S130

    CAS  Article  Google Scholar 

  3. Bai G, Ambalavanar R, Wei D, Dessem D (2007) Downregulation of selective microRNAs in trigeminal ganglion neurons following inflammatory muscle pain. Mol Pain 3:15. https://doi.org/10.1186/1744-8069-3-15

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bali KK, Hackenberg M, Lubin A, Kuner R, Devor M (2014) Sources of individual variability: miRNAs that predispose to neuropathic pain identified using genome-wide sequencing. Mol Pain 10:22. https://doi.org/10.1186/1744-8069-10-22

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Bao Y, Wang S, Xie Y, Jin K, Bai Y, Shan S (2018) MiR-28-5p relieves neuropathic pain by targeting Zeb1 in CCI rat models. J Cell Biochem 119:8555–8563. https://doi.org/10.1002/jcb.27096

    CAS  Article  PubMed  Google Scholar 

  6. Blom SM, Pfister JP, Santello M, Senn W, Nevian T (2014) Nerve injury-induced neuropathic pain causes disinhibition of the anterior cingulate cortex. J Neurosci 34:5754–5764. https://doi.org/10.1523/JNEUROSCI.3667-13.2014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Bouhassira D, Lanteri-Minet M, Attal N, Laurent B, Touboul C (2008) Prevalence of chronic pain with neuropathic characteristics in the general population. Pain 136:380–387. https://doi.org/10.1016/j.pain.2007.08.013

    Article  PubMed  Google Scholar 

  8. Clark AK, Old EA, Malcangio M (2013) Neuropathic pain and cytokines: current perspectives. J Pain Res 6:803–814. https://doi.org/10.2147/JPR.S53660

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, Freeman R, Truini A, Attal N, Finnerup NB, Eccleston C, Kalso E, Bennett DL, Dworkin RH, Raja SN (2017) Neuropathic pain. Nat Rev Dis Primers 3:17002. https://doi.org/10.1038/nrdp.2017.2

    Article  PubMed  PubMed Central  Google Scholar 

  10. Colvin LA, Dougherty PM (2015) Peripheral neuropathic pain: signs, symptoms, mechanisms, and causes: are they linked? Br J Anaesth 114:361–363. https://doi.org/10.1093/bja/aeu323

    CAS  Article  PubMed  Google Scholar 

  11. Dai Z, Chu H, Ma J, Yan Y, Zhang X, Liang Y (2018) The regulatory mechanisms and therapeutic potential of microRNAs: from chronic pain to morphine tolerance. Front Mol Neurosci 11:80. https://doi.org/10.3389/fnmol.2018.00080

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. DeLeo JA, Colburn RW, Nichols M, Malhotra A (1996) Interleukin-6-mediated hyperalgesia/allodynia and increased spinal IL-6 expression in a rat mononeuropathy model. J Interf Cytokine Res 16:695–700. https://doi.org/10.1089/jir.1996.16.695

    CAS  Article  Google Scholar 

  13. Doyen PJ, Vergouts M, Pochet A, Desmet N, van Neerven S, Brook G, Hermans E (2017) Inflammation-associated regulation of RGS in astrocytes and putative implication in neuropathic pain. J Neuroinflammation 14:209. https://doi.org/10.1186/s12974-017-0971-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Genda Y, Arai M, Ishikawa M, Tanaka S, Okabe T, Sakamoto A (2013) microRNA changes in the dorsal horn of the spinal cord of rats with chronic constriction injury: a TaqMan(R) Low Density Array study. Int J Mol Med 31:129–137. https://doi.org/10.3892/ijmm.2012.1163

    CAS  Article  PubMed  Google Scholar 

  15. Hung AL, Lim M, Doshi TL (2017) Targeting cytokines for treatment of neuropathic pain. Scand J Pain 17:287–293. https://doi.org/10.1016/j.sjpain.2017.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  16. Janssens R, Struyf S, Proost P (2018) The unique structural and functional features of CXCL12. Cell Mol Immunol 15:299–311. https://doi.org/10.1038/cmi.2017.107

    CAS  Article  PubMed  Google Scholar 

  17. Jiangpan P, Qingsheng M, Zhiwen Y, Tao Z (2016) Emerging role of microRNA in neuropathic pain. Curr Drug Metab 17:336–344

    Article  Google Scholar 

  18. McCarberg BH, Billington R (2006) Consequences of neuropathic pain: quality-of-life issues and associated costs. Am J Manag Care 12:S263–S268

    PubMed  Google Scholar 

  19. Tang S, Zhou J, Jing H, Liao M, Lin S, Huang Z, Huang T, Zhong J, HanbingWang (2019) Functional roles of lncRNAs and its potential mechanisms in neuropathic pain. Clin Epigenetics 11:78. https://doi.org/10.1186/s13148-019-0671-8

    Article  PubMed  PubMed Central  Google Scholar 

  20. von Schack D, Agostino MJ, Murray BS, Li Y, Reddy PS, Chen J, Choe SE, Strassle BW, Li C, Bates B, Zhang L, Hu H, Kotnis S, Bingham B, Liu W, Whiteside GT, Samad TA, Kennedy JD, Ajit SK (2011) Dynamic changes in the microRNA expression profile reveal multiple regulatory mechanisms in the spinal nerve ligation model of neuropathic pain. PLoS One 6:e17670. https://doi.org/10.1371/journal.pone.0017670

    CAS  Article  Google Scholar 

  21. Wei W, Wang H, Ji S (2017) Paradoxes of the EphB1 receptor in malignant brain tumors. Cancer Cell Int 17:21. https://doi.org/10.1186/s12935-017-0384-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Xie X, Ma L, Xi K, Zhang W, Fan D (2017) MicroRNA-183 suppresses neuropathic pain and expression of AMPA receptors by targeting mTOR/VEGF signaling pathway. Cell Physiol Biochem 41:181–192. https://doi.org/10.1159/000455987

    CAS  Article  PubMed  Google Scholar 

  23. Yang D et al (2017) The role of miR-190a-5p contributes to diabetic neuropathic pain via targeting SLC17A6. J Pain Res 10:2395–2403. https://doi.org/10.2147/JPR.S133755

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Yu SN, Liu GF, Li LY, Zhao GQ, Liu L, Li XF (2019) Analgesic effects of microRNA-129-5p against bone cancer pain through the EphB1/EphrinB2 signaling pathway in mice. J Cell Biochem 120:2876–2885. https://doi.org/10.1002/jcb.26605

    CAS  Article  PubMed  Google Scholar 

  25. Zempleni J, Baier SR, Howard KM, Cui J (2015) Gene regulation by dietary microRNAs. Can J Physiol Pharmacol 93:1097–1102. https://doi.org/10.1139/cjpp-2014-0392

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Zeng J, Shen JP, Wang JT, Hu HW, Zhang CJ, Bai R, Zhang LM, He JZ (2018) Impacts of projected climate warming and wetting on soil microbial communities in Alpine grassland ecosystems of the Tibetan Plateau. Microb Ecol 75:1009–1023. https://doi.org/10.1007/s00248-017-1098-4

    CAS  Article  PubMed  Google Scholar 

  27. Zhang JM, An J (2007) Cytokines, inflammation, and pain. Int Anesthesiol Clin 45:27–37. https://doi.org/10.1097/AIA.0b013e318034194e

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Zhang J, Zhang H, Zi T (2015) Overexpression of microRNA-141 relieves chronic constriction injury-induced neuropathic pain via targeting high-mobility group box 1. Int J Mol Med 36:1433–1439. https://doi.org/10.3892/ijmm.2015.2342

    CAS  Article  PubMed  Google Scholar 

  29. Zhang Y, Huang B, Wang HY, Chang A, Zheng XFS (2017) Emerging role of microRNAs in mTOR signaling. Cell Mol Life Sci 74:2613–2625. https://doi.org/10.1007/s00018-017-2485-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Zhou Y, Ferguson J, Chang JT, Kluger Y (2007) Inter- and intra-combinatorial regulation by transcription factors and microRNAs. BMC Genomics 8:396. https://doi.org/10.1186/1471-2164-8-396

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by the Hebei Province Natural Fund Surface Project (H2017106022).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tieying Song.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Song, T., Wang, W. et al. miR-129-5p Alleviates Neuropathic Pain Through Regulating HMGB1 Expression in CCI Rat Models. J Mol Neurosci 70, 84–93 (2020). https://doi.org/10.1007/s12031-019-01403-y

Download citation

Keywords

  • miR-129-5p
  • Neuropathic pain
  • HMGB1
  • Cytokines
  • CCI rat models