Skip to main content

Advertisement

Log in

Inhibition of EPAC2 Attenuates Intracerebral Hemorrhage-Induced Secondary Brain Injury via the p38/BIM/Caspase-3 Pathway

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Exchange proteins directly activated by cAMP (EPACs) are critical cAMP-dependent signaling pathway intermediaries that have been implicated in the pathogenesis of several human diseases, particularly neurological disorders. However, their pathogenic role in secondary brain injury (SBI) induced by intracranial hemorrhage (ICH) is unknown. The aim of this study was to examine the effects of EPAC2 on ICH-induced SBI and its underlying mechanisms. An in vivo ICH model was established in Sprague–Dawley rats by autologous blood injection. In addition, rat primary cortical neuronal cultures were exposed to oxyhemoglobin to simulate ICH in vitro. The function of EPAC2 in SBI induced by ICH was studied using the EPAC2-specific inhibitor ESI-05. In this study, we found that EPAC2 protein expression was significantly increased in the ICH models in vitro and in vivo. Furthermore, EPAC2 activation was inhibited by ESI-05 under ICH conditions. Inhibition of EPAC2 decreased the apoptosis rate of nerve cells in the cortex accompanied by a corresponding decrease in the protein expression of phosphorylated p38, Bcl-2-like protein 11 (BIM), and caspase-3. In summary, this study showed that inhibition of EPAC2 activation by ESI-05 suppressed SBI induced by ICH via the p38/BIM/caspase-3 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ICH:

intracerebral hemorrhage

SBI:

secondary brain injury

EPAC2:

exchange proteins directly activated by cAMP

TUNEL:

terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling

FJB:

Fluoro-Jade B

SD:

Sprague–Dawley

OxyHb:

oxyhemoglobin

References

  • Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    Article  CAS  Google Scholar 

  • Almahariq M, Tsalkova T, Mei FC, Chen H, Zhou J, Sastry SK, Schwede F, Cheng X (2013) A novel EPAC-specific inhibitor suppresses pancreatic cancer cell migration and invasion. Mol Pharmacol 83:122–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broderick JP, Brott T, Tomsick T, Miller R, Huster G (1993) Intracerebral hemorrhage more than twice as common as subarachnoid hemorrhage. J Neurosurg 78:188–191. https://doi.org/10.3171/jns.1993.78.2.0188

    Article  CAS  PubMed  Google Scholar 

  • Brouillet E, Jacquard C, Bizat N, Blum D (2005) 3-Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington’s disease. J Neurochem 95:1521–1540

    Article  CAS  PubMed  Google Scholar 

  • Brouwers HB, Greenberg SM (2013) Hematoma expansion following acute intracerebral hemorrhage. Cerebrovasc Dis 35:195–201. https://doi.org/10.1159/000346599

    Article  PubMed  PubMed Central  Google Scholar 

  • de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL (1998) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396:474–477. https://doi.org/10.1038/24884

    Article  CAS  PubMed  Google Scholar 

  • Emery AC, Eiden MV, Eiden LE (2014) Separate cyclic AMP sensors for neuritogenesis, growth arrest, and survival of neuroendocrine cells. J Biol Chem 289:10126–10139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V (2009) Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol 8:355–369. https://doi.org/10.1016/S1474-4422(09)70025-0

    Article  Google Scholar 

  • Hua Y, Keep RF, Hoff JT, Xi G (2007) Brain injury after intracerebral hemorrhage: the role of thrombin and iron. Stroke 38:759–762. https://doi.org/10.1161/01.STR.0000247868.97078.10

    Article  CAS  PubMed  Google Scholar 

  • Hua Y, Xi G, Keep RF, Hoff JT (2000) Complement activation in the brain after experimental intracerebral hemorrhage. J Neurosurg 92:1016–1022. https://doi.org/10.3171/jns.2000.92.6.1016

    Article  CAS  PubMed  Google Scholar 

  • Irving EA, Bamford M (2002) Role of mitogen-and stress-activated kinases in ischemic injury. J Cereb Blood Flow Metab 22:631–647

    Article  CAS  PubMed  Google Scholar 

  • Jänicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273:9357–9360

    Article  PubMed  Google Scholar 

  • Jonakait GM, Ni L (2009) Prostaglandins compromise basal forebrain cholinergic neuron differentiation and survival: action at EP1/3 receptors results in AIF-induced death. Brain Res 1285:30–41

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann T, Jost PJ, Pellegrini M, Puthalakath H, Gugasyan R, Gerondakis S, Cretney E, Smyth MJ, Silke J, Hakem R, Bouillet P, Mak TW, Dixit VM, Strasser A (2009) Fatal hepatitis mediated by tumor necrosis factor TNFα requires caspase-8 and involves the BH3-only proteins Bid and Bim. Immunity 30:56–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawasaki H et al (1998) A family of cAMP-binding proteins that directly activate Rap1. Science 282:2275–2279

    Article  CAS  PubMed  Google Scholar 

  • Keep RF, Hua Y, Xi G (2012) Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol 11:720–731. https://doi.org/10.1016/S1474-4422(12)70104-7

    Article  CAS  PubMed  Google Scholar 

  • Kelly MP, Stein JM, Vecsey CG, Favilla C, Yang X, Bizily SF, Esposito MF, Wand G, Kanes SJ, Abel T (2009) Developmental etiology for neuroanatomical and cognitive deficits in mice overexpressing Galphas, a G-protein subunit genetically linked to schizophrenia. Mol Psychiatry 14:398–415, 347. https://doi.org/10.1038/mp.2008.124

    Article  CAS  PubMed  Google Scholar 

  • Kim CG, Castro-Aceituno V, Abbai R, Lee HA, Simu SY, Han Y, Hurh J, Kim YJ, Yang DC (2018) Caspase-3/MAPK pathways as main regulators of the apoptotic effect of the phyto-mediated synthesized silver nanoparticle from dried stem of Eleutherococcus senticosus in human cancer cells. Biomed Pharmacother 99:128–133

    Article  CAS  PubMed  Google Scholar 

  • Li B, Li H, Wang Z, Wang Y, Gao A, Cui Y, Liu Y, Chen G (2015a) Evidence for the role of phosphatidylcholine-specific phospholipase in experimental subarachnoid hemorrhage in rats. Exp Neurol 272:145–151. https://doi.org/10.1016/j.expneurol.2015.02.031

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zhou S, Wu L, Liu K, Zhang Y, Ma G, Wang L (2015b) The role of p38MAPK signal pathway in the neuroprotective mechanism of limb postconditioning against rat cerebral ischemia/reperfusion injury. J Neurol Sci 357:270–275

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Zhu Y, Chen H, Wang P, Mei FC, Ye N, Cheng X, Zhou J (2017) Structure-activity relationships of 2-substituted phenyl-N-phenyl-2-oxoacetohydrazonoyl cyanides as novel antagonists of exchange proteins directly activated by cAMP (EPACs). Bioorg Med Chem Lett 27:5163–5166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda M, Oh-Hashi K, Yokota I, Sawa T, Amaya F (2017) Acquired exchange protein directly activated by cyclic adenosine monophosphate activity induced by p38 mitogen-activated protein kinase in primary afferent neurons contributes to sustaining postincisional nociception. Anesthesiology 126:150–162

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP, Kroemer G (2003) Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends Mol Med 9:196–205

    Article  CAS  PubMed  Google Scholar 

  • McPhee I, Gibson LCD, Kewney J, Darroch C, Stevens PA, Spinks D, Cooreman A, MacKenzie SJ (2005) Cyclic nucleotide signalling: a molecular approach to drug discovery for Alzheimer’s disease. Biochem Soc Trans 33:1330–1332. https://doi.org/10.1042/BST20051330

    Article  CAS  PubMed  Google Scholar 

  • Middeldorp CM, Vink JM, Hettema JM, de Geus EJC, Kendler KS, Willemsen G, Neale MC, Boomsma DI, Chen X (2010) An association between Epac-1 gene variants and anxiety and depression in two independent samples. Am J Med Genet B Neuropsychiatr Genet 153B:214–219. https://doi.org/10.1002/ajmg.b.30976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey M, Varghese M, Sindhu KM, Sreetama S, Navneet A, Mohanakumar KP, Usha R (2008) Mitochondrial NAD+-linked state 3 respiration and complex-I activity are compromised in the cerebral cortex of 3-nitropropionic acid-induced rat model of Huntington’s disease. J Neurochem 104:420–434

    CAS  PubMed  Google Scholar 

  • Parvathenani LK, Calandra V, Roberts SB, Posmantur R (2000) cAMP delays beta-amyloid (25-35) induced cell death in rat cortical neurons. Neuroreport 11:2293–2297

    Article  CAS  PubMed  Google Scholar 

  • Porat S, Simantov R (1999) Bcl-2 and p53: role in dopamine-induced apoptosis and differentiation. Ann N Y Acad Sci 893:372–375

    Article  CAS  PubMed  Google Scholar 

  • Porter AG, Jänicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6(99):99–104

    Article  CAS  PubMed  Google Scholar 

  • Puthalakath H, O’Reilly LA, Gunn P, Lee L, Kelly PN, Huntington ND, Hughes PD, Michalak EM, McKimm-Breschkin J, Motoyama N, Gotoh T, Akira S, Bouillet P, Strasser A (2007) ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129:1337–1349

    Article  CAS  PubMed  Google Scholar 

  • Qureshi AI, Ling GS, Khan J, Suri MF, Miskolczi L, Guterman LR, Hopkins LN (2001) Quantitative analysis of injured, necrotic, and apoptotic cells in a new experimental model of intracerebral hemorrhage. Crit Care Med 29:152–157

    Article  CAS  Google Scholar 

  • Qureshi AI et al (2003) Apoptosis as a form of cell death in intracerebral hemorrhage. Neurosurgery 52:1041–1047 discussion 1047–1048

    PubMed  Google Scholar 

  • Rehmann H (2013) Epac-inhibitors: facts and artefacts. Sci Rep 3:3032

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarkar S, Ravikumar B, Floto RA, Rubinsztein DC (2009) Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ 16:46–56. https://doi.org/10.1038/cdd.2008.110

    Article  CAS  PubMed  Google Scholar 

  • Srivastava DP et al (2012a) Social, communication, and cortical structural impairments in Epac2-deficient mice. J Neurosci 32:11864–11878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava DP, Woolfrey KM, Jones KA, Anderson CT, Smith KR, Russell TA, Lee H, Yasvoina MV, Wokosin DL, Ozdinler PH, Shepherd GM, Penzes P (2012b) An autism-associated variant of Epac2 reveals a role for Ras/Epac2 signaling in controlling basal dendrite maintenance in mice. PLoS Biol 10:e1001350. https://doi.org/10.1371/journal.pbio.1001350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ster J, de Bock F, Bertaso F, Abitbol K, Daniel H, Bockaert J, Fagni L (2009) Epac mediates PACAP-dependent long-term depression in the hippocampus. J Physiol 587:101–113. https://doi.org/10.1113/jphysiol.2008.157461

    Article  CAS  PubMed  Google Scholar 

  • Sui X, Kong N, Ye L, Han W, Zhou J, Zhang Q, He C, Pan H (2014) p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett 344:174–179

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Yokoyama U, Abe T, Kiyonari H, Yamashita N, Kato Y, Kurotani R, Sato M, Okumura S, Ishikawa Y (2010) Differential roles of Epac in regulating cell death in neuronal and myocardial cells. J Biol Chem 285:24248–24259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsalkova T et al (2012) Isoform-specific antagonists of exchange proteins directly activated by cAMP. Proc Natl Acad Sci 109:18613–18618

    Article  PubMed  Google Scholar 

  • van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ (2010) Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol 9:167–176. https://doi.org/10.1016/S1474-4422(09)70340-0

    Article  PubMed  Google Scholar 

  • Wang W, Tang L, Li Y, Wang Y (2015) Biochanin A protects against focal cerebral ischemia/reperfusion in rats via inhibition of p38-mediated inflammatory responses. J Neurol Sci 348:121–125

    Article  CAS  PubMed  Google Scholar 

  • Wolf BB, Schuler M, Echeverri F, Green DR (1999) Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. J Biol Chem 274:30651–30656

    Article  CAS  PubMed  Google Scholar 

  • Zhai W, Chen D, Shen H, Chen Z, Li H, Yu Z, Chen G (2016) A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway. Mol Brain 9:66. https://doi.org/10.1186/s13041-016-0247-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Zhang L, Liu H, Jiang F, Wang H, Li D, Gao R (2018) Inhibition of Epac2 attenuates neural cell apoptosis and improves neurological deficits in a rat model of traumatic brain injury. Front Neurosci 12:263

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Project of Jiangsu Provincial Medical Innovation Team (No. CXTDA2017003), Suzhou Key Medical Center (No. Szzx201501), Scientific Department of Jiangsu Province (No. BE2017656), Natural Science Foundation of Jiangsu Province (No. BK20180204), Suzhou Government (No. LCZX201601), and grants from the National Natural Science Foundation of China (No. 81571121, No. 81801151 and No. 81771252).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong Wang or Xiang Li.

Ethics declarations

All experiments were approved by the Ethics Committee of the First Affiliated Hospital of Soochow University (Suzhou, China). The experimental procedures were conducted strictly according to the Animal Health Management Committee of Soochow University. In accordance with their animal ethics criteria, the sample size of this study was determined by efficacy analysis.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, Y., Xu, H., Richard, S.A. et al. Inhibition of EPAC2 Attenuates Intracerebral Hemorrhage-Induced Secondary Brain Injury via the p38/BIM/Caspase-3 Pathway. J Mol Neurosci 67, 353–363 (2019). https://doi.org/10.1007/s12031-018-1215-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-018-1215-y

Keywords

Navigation