Journal of Molecular Neuroscience

, Volume 61, Issue 3, pp 359–367 | Cite as

Sexually Dimorphic Expression of Reelin in the Brain of a Mouse Model of Alzheimer Disease

  • Giampiero Palladino
  • Vincenzina Nicolia
  • Gabor G. Kovacs
  • Sonia Canterini
  • Viviana Ciraci
  • Andrea Fuso
  • Franco Mangia
  • Sigfrido Scarpa
  • Maria Teresa Fiorenza
Article

Abstract

Recent evidence highlights the protective role of reelin against amyloid β (Aβ)-induced synaptic dysfunction and cognitive impairment in Alzheimer disease (AD). In this study, exploiting TgCRND8 mice that overexpress a mutant form of amyloid β precursor protein (AβPP) and display an early onset of AD neuropathological signs, we addressed the question whether changes of reelin expression eventually precede the appearance of Aβ-plaques in a sex-dependent manner. We show that sex-associated and brain region-specific differences in reelin expression appear long before Aβ-plaque formation. However, in spite of a downregulation of reelin expression compared to males, TgCRND8 females display fewer Aβ-plaques, suggesting that additional factors, other than sex and reelin level, influence amyloidosis in this mouse model.

Keywords

TgCRND8 Mouse models of AD Sex-influenced gene expression patterns Aβ-plaques 

Notes

Acknowledgements

This study was supported by the EC 7th Framework Program, Grant No. 278486 “Develage” and Ateneo 2014 Sapienza to SS and MTF.

Supplementary material

12031_2016_865_MOESM1_ESM.pdf (4 mb)
Supplementary Table 1 (PDF 4072 kb)
12031_2016_865_MOESM2_ESM.pdf (8.2 mb)
Supplementary Fig. 1 (PDF 8428 kb)

References

  1. Arnaud L, Ballif BA, Cooper JA (2003) Regulation of protein tyrosine kinase signaling by substrate degradation during brain development. Mol Cell Biol 23:9293–9302CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barnes LL, Wilson RS, Bienias JL, Schneider JA, Evans DA, Bennett DA (2005) Sex differences in the clinical manifestations of Alzheimer disease pathology. Arch Gen Psychiatry 62:685–691CrossRefPubMedGoogle Scholar
  3. Beffert U, Weeber EJ, Durudas A, Qiu S, Masiulis I, Sweatt JD, Li WP, Adelmann G, Frotscher M, Hammer RE, Herz J (2005) Modulation of synaptic plasticity and memory by reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron 47:567–579CrossRefPubMedGoogle Scholar
  4. Bellucci A, Rosi MC, Grossi C, Fiorentini A, Luccarini I, Casamenti F (2007) Abnormal processing of tau in the brain of aged TgCRND8 mice. Neurobiol Dis 27:328–338CrossRefPubMedGoogle Scholar
  5. Chen Y, Beffert U, Ertunc M, Tang TS, Kavalali ET, Bezprozvanny I, Herz J (2005) Reelin modulates NMDA receptor activity in cortical neurons. J Neurosci 25:8209–8216CrossRefPubMedGoogle Scholar
  6. Chishti MA, Yang DS, Janus C, Phinney AL, Horne P, Pearson J, Strome R, Zuker N, Loukides J, French J et al (2001) Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J Biol Chem 276:21562–21570CrossRefPubMedGoogle Scholar
  7. Cooper JA (2008) A mechanism for inside-out lamination in the neocortex. Trends Neurosci 31:113–119CrossRefPubMedGoogle Scholar
  8. D’Arcangelo G, Homayouni R, Keshvara L, Rice DS, Sheldon M, Curran T (1999) Reelin is a ligand for lipoprotein receptors. Neuron 24:471–479CrossRefPubMedGoogle Scholar
  9. Doehner J, Knuesel I (2010) Reelin-mediated signaling during normal and pathological forms of aging. Aging Dis 1:12–29PubMedPubMedCentralGoogle Scholar
  10. Dong E, Caruncho H, Liu WS, Smalheiser NR, Grayson DR, Costa E, Guidotti A (2003) A reelin-integrin receptor interaction regulates arc mRNA translation in synaptoneurosomes. Proc Natl Acad Sci U S A 100:5479–5484CrossRefPubMedPubMedCentralGoogle Scholar
  11. Durakoglugil MS, Chen Y, White CL, Kavalali ET, Herz J (2009) Reelin signaling antagonizes beta-amyloid at the synapse. Proc Natl Acad Sci U S A 106:15938–15943CrossRefPubMedPubMedCentralGoogle Scholar
  12. Feher A, Juhasz A, Pakaski M, Kalman J, Janka Z (2015) Genetic analysis of the RELN gene: gender specific association with Alzheimer’s disease. Psychiatry Res 230:716–718CrossRefPubMedGoogle Scholar
  13. Feng L, Allen NS, Simo S, Cooper JA (2007) Cullin 5 regulates Dab1 protein levels and neuron positioning during cortical development. Genes Dev 21:2717–2730CrossRefPubMedPubMedCentralGoogle Scholar
  14. Förster E (2014) Reelin, neuronal polarity and process orientation of cortical neurons. Neuroscience 269:102–111CrossRefPubMedGoogle Scholar
  15. Förster E, Bock HH, Herz J, Chai X, Frotscher M, Zhao S (2010) Emerging topics in reelin function. Eur J Neurosci 31:1511–1518PubMedPubMedCentralGoogle Scholar
  16. Fuso A, Nicolia V, Pasqualato A, Fiorenza MT, Cavallaro RA, Scarpa S (2011) Changes in Presenilin 1 gene methylation pattern in diet-induced B vitamin deficiency. Neurobiol Aging 32:187–199CrossRefPubMedGoogle Scholar
  17. Fuso A, Cavallaro RA, Nicolia V, Scarpa S (2012) PSEN1 promoter demethylation in hyperhomocysteinemic TgCRND8 mice is the culprit, not the consequence. Curr Alzheimer Res 9:527–535CrossRefPubMedGoogle Scholar
  18. Granger MW, Franko B, Taylor MW, Messier C, George-Hyslop PS, Bennett SA (2016) A TgCRND8 mouse model of Alzheimerʼs disease exhibits sexual dimorphisms in behavioral indices of cognitive reserve. J Alzheimers Dis 51:757–773CrossRefPubMedGoogle Scholar
  19. Hebert LE, Weuve J, Scherr PA, Evans DA (2013) Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology 80:1778–1783CrossRefPubMedPubMedCentralGoogle Scholar
  20. Henderson VW, Buckwalter JG (1994) Cognitive deficits of men and women with Alzheimerʼs disease. Neurology 44:90–96CrossRefPubMedGoogle Scholar
  21. Herring A, Donath A, Steiner KM, Widera MP, Hamzehian S, Kanakis D, Kölble K, ElAli A, Hermann DM, Paulus W, Keyvani K (2012) Reelin depletion is an early phenomenon of Alzheimerʼs pathology. J Alzheimers Dis 30:963–979PubMedGoogle Scholar
  22. Hoe HS, Tran TS, Matsuoka Y, Howell BW, Rebeck GW (2006) DAB1 and reelin effects on amyloid precursor protein and ApoE receptor 2 trafficking and processing. J Biol Chem 281:35176–35185CrossRefPubMedGoogle Scholar
  23. Howell BW, Herrick TM, Cooper JA (1999) Reelin-induced tyrosine phosphorylation of disabled 1 during neuronal positioning. Genes Dev 13:643–648CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kerjan G, Gleeson JG (2007) A missed exit: reelin sets in motion Dab1 polyubiquitination to put the break on neuronal migration. Genes Dev 21:2850–2854CrossRefPubMedGoogle Scholar
  25. Knuesel I, Nyffeler M, Mormède C, Muhia M, Meyer U, Pietropaolo S, Yee BK, Pryce CR, LaFerla FM, Marighetto A, Feldon J (2009) Age-related accumulation of reelin in amyloid-like deposits. Neurobiol Aging 30:697–716CrossRefPubMedGoogle Scholar
  26. Kobro-Flatmoen A, Nagelhus A, Witter MP (2016) Reelin-immunoreactive neurons in entorhinal cortex layer II selectively express intracellular amyloid in early Alzheimer’s disease. Neurobiol Dis 93:172–183CrossRefPubMedGoogle Scholar
  27. Koie M, Okumura K, Hisanaga A, Kamei T, Sasaki K, Deng M et al (2014) Cleavage within reelin repeat 3 regulates the duration and range of the signaling activity of reelin protein. J Biol Chem 289:12922–12930CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lee GH, D’Arcangelo G (2016) New insights into reelin-mediated signaling pathways. Front Cell Neurosci 10:122PubMedPubMedCentralGoogle Scholar
  29. Lussier A, Weeber E, Rebeck W (2016) Reelin proteolysis affects signaling related to normal synapse function and neurodegeneration. Front Cell Neurosci 10:75CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mielke MM, Vemuri P, Rocca WA (2014) Clinical epidemiology of Alzheimer’s disease: assessing sex and gender differences. Clin Epidemiol 6:37–48CrossRefPubMedPubMedCentralGoogle Scholar
  31. Naurin S, Hansson B, Hasselquist D, Kim Y-H, Bensch S (2011) The sex-biased brain: sexual dimorphism in gene expression in two species of songbirds. BMC Genomics 12:37CrossRefPubMedPubMedCentralGoogle Scholar
  32. Paxinos G, Watson C (1998) The mouse brain in stereotaxic coordinates. Academic Press Limited, LondonGoogle Scholar
  33. Pesold C, Impagnatiello F, Pisu MG, Uzunov DP, Costa E, Guidotti A, Caruncho HJ (1998) Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. Proc Natl Acad Sci U S A 95:3221–3226CrossRefPubMedPubMedCentralGoogle Scholar
  34. Piscopo P, Canterini S, Carletti V, Rosa P, Crestini A, Fiorenza MT, Confaloni A (2013) Sex effect on presenilins expression in post-natal rat brain. Adv Biosci Biotechnol 4:1086–1094CrossRefGoogle Scholar
  35. Proust-Lima C, Amieva H, Letenneur L, Orgogozo JM, Jacqmin-Gadda H, Dartigues JF (2008) Gender and education impact on brain aging: a general cognitive factor approach. Psychol Aging 23:608–620CrossRefPubMedGoogle Scholar
  36. Pujadas L, Rossi D, Andrés R, Teixeira CM, Serra-Vidal B, Parcerisas A, Maldonado R, Giralt E, Carulla N, Soriano E (2014) Reelin delays amyloid-beta fibril formation and rescues cognitive deficits in a model of Alzheimerʼs disease. Nat Commun 5:3443CrossRefPubMedGoogle Scholar
  37. Ramos-Moreno T, Galazo MJ, Porrero C, Martínez-Cerdeño V, Clascá F (2006) Extracellular matrix molecules and synaptic plasticity: immunomapping of intracellular and secreted reelin in the adult rat brain. Eur J Neurosci 23:401–422CrossRefPubMedGoogle Scholar
  38. Read S, Pedersen NL, Gatz M, Berg S, Vuoksimaa E, Malmberg B, Johansson B, McClearn GE (2006) Sex differences after all those years? Heritability of cognitive abilities in old age. J Gerontol B Psychol Sci Soc Sci 61:137–143CrossRefGoogle Scholar
  39. Romano E, Fuso A, Laviola G (2013) Nicotine restores wt-like levels of reelin and GAD67 gene expression in brain of heterozygous reeler mice. Neurotox Res 24:205–215CrossRefPubMedGoogle Scholar
  40. Selkoe DJ, Yamazaki T, Citron M, Podlisny MB, Koo EH, Teplow DB, Haass C (1996) The role of APP processing and trafficking pathways in the formation of amyloid beta-protein. Ann N Y Acad Sci 17:57–64CrossRefGoogle Scholar
  41. Steele JW, Brautigam H, Short JA, Sowa A, Shi M, Yadav A, Weaver CM, Westaway D, Fraser PE, St George-Hyslop PH, Gandy S, Hof PR, Dickstein DL (2014) Early fear memory defects are associated with altered synaptic plasticity and molecular architecture in the TgCRND8 Alzheimer’s disease mouse model. J Comp Neurol 522:2319–2335CrossRefPubMedPubMedCentralGoogle Scholar
  42. Weeber EJ, Beffert U, Jones C, Christian JM, Forster E, Sweatt JD, Herz J (2002) Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem 277:39944–39952CrossRefPubMedGoogle Scholar
  43. Zhao S, Frotscher M (2010) Go or stop? Divergent roles of reelin in radial neuronal migration. Neuroscientist 16:421–434CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Giampiero Palladino
    • 1
  • Vincenzina Nicolia
    • 2
  • Gabor G. Kovacs
    • 3
  • Sonia Canterini
    • 1
  • Viviana Ciraci
    • 2
  • Andrea Fuso
    • 1
    • 4
  • Franco Mangia
    • 1
  • Sigfrido Scarpa
    • 2
  • Maria Teresa Fiorenza
    • 1
  1. 1.Department of Psychology, Section of Neuroscience and “Daniel Bovet” Neurobiology Research CenterSapienza University of RomeRomeItaly
  2. 2.Department of Surgery “P. Valdoni”Sapienza University of RomeRomeItaly
  3. 3.Institute of Neurology Medical University of ViennaViennaAustria
  4. 4.European Center for Brain Research (CERC)/IRCCS Santa Lucia FoundationRomeItaly

Personalised recommendations