Journal of Molecular Neuroscience

, Volume 61, Issue 3, pp 305–311 | Cite as

Synaptosome-Associated Protein 25 (SNAP25) Gene Association Analysis Revealed Risk Variants for ASD, in Iranian Population

  • Mohammad reza Safari
  • Mir Davood Omrani
  • Rezvan Noroozi
  • Arezou Sayad
  • Shaghayegh Sarrafzadeh
  • Alireza Komaki
  • Fateme Asadzadeh Manjili
  • Mehrdokht Mazdeh
  • Ali Ghaleiha
  • Mohammad Taheri
Article

Abstract

Autism spectrum disorder (ASD) is a common, complex neurological condition, affecting approximately 1% of people worldwide. Monogenic neurodevelopmental disorders which showed autistic behavior patterns have suggested synaptic dysfunction, as a key mechanism in the pathophysiology of ASD. Subsequently, genes involved in synaptic signaling have been investigated with a priority for candidate gene studies. A synaptosomal-associated protein 25 (SNAP25) gene plays a crucial role in the central nervous system, contributing to exocytosis by targeting and fusion of vesicles to the cell membrane. Studies have shown a correlation between aberrant expression of the SNAP25 and a variety of brain diseases. Single nucleotide polymorphisms (SNPs) in this gene are associated with several psychiatric diseases, such as bipolar, schizophrenia, and attention-deficit/hyperactivity disorder. The aim of the present study was to investigate whether polymorphisms (rs3746544 and rs1051312) in the regulatory 3′-untranslated region (3′UTR) of the SNAP25 gene have an association with ASD in unrelated Iranian case (N = 524)-control (N = 472) samples. We observed robust association of the rs3746544 SNP and ASD patients, in both allele and haplotype-based analyses. Our results supported the previous observations and indicated a possible role for SNAP25 polymorphisms as susceptibility genetic factors involved in developing ASD.

Keywords

Autism spectrum disorders SNAP25 Polymorphisms Neurodevelopmental disorders 

Notes

Acknowledgments

We would like to offer our sincere gratitude to the State Welfare Organization and Departments of Special Education of Tehran, Hamadan, Ahvaz, Mashhad, Esfahan, and Abadan. We are also grateful to all the honorable patients and volunteer subjects as controls and their families. This study was funded by the Hamadan University of Medical Sciences (grant number 9504081836) and was supported by the Department of Medical Genetics of Shahid Beheshti University of Medical Science.

Compliance with Ethical Standards

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional Hamadan University of Medical Sciences (IR.UMSHA.REC.1394.521).

References

  1. Ardlie KG, Deluca DS, Segre AV, Sullivan TJ, Young TR, Gelfand ET, Trowbridge CA, Maller JB, Tukiainen T, Lek M (2015) The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348:648–660CrossRefGoogle Scholar
  2. Baird G, Simonoff E, Pickles A, Chandler S, Loucas T, Meldrum D, Charman T (2006) Prevalence of disorders of the autism spectrum in a population cohort of children in South Thames: the Special Needs and Autism Project (SNAP). Lancet 368:210–215CrossRefPubMedGoogle Scholar
  3. Baron-Cohen S, Lombardo MV, Auyeung B, Ashwin E, Chakrabarti B, Knickmeyer R (2011) Why are autism spectrum conditions more prevalent in males. PLoS Biol 9:e1001081CrossRefPubMedPubMedCentralGoogle Scholar
  4. Braida D, Guerini F, Ponzoni L, Corradini I, De Astis S, Pattini L, Bolognesi E, Benfante R, Fornasari D, Chiappedi M (2015) Association between SNAP-25 gene polymorphisms and cognition in autism: functional consequences and potential therapeutic strategies. Transl Psychiatry 5:e500CrossRefPubMedPubMedCentralGoogle Scholar
  5. Coghlan S, Horder J, Inkster B, Mendez MA, Murphy DG, Nutt DJ (2012) GABA system dysfunction in autism and related disorders: from synapse to symptoms. Neurosci Biobehav Rev 36:2044–2055CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dean, A., Sullivan, K. & Soe, M. 2009. Open source epidemiologic statistics for public health, version. Updated 2009/19/09. Available from: http://wwwopenepi.com. (10 Nov 2010).
  7. Dorahy, M. 2014. The Diagnostic and Statistical Manual of Mental Disorders–5th edition (DSM-5).Google Scholar
  8. Fanous A, Zhao Z, Van Den Oord E, Maher B, Thiselton D, Bergen S, Wormley B, Bigdeli T, Amdur R, O’neill F (2010) Association study of SNAP25 and schizophrenia in irish family and case–control samples. Am J Med Genet B Neuropsychiatr Genet 153:663–674Google Scholar
  9. Fatemi SH, Earle JA, Stary JM, Lee S, Sedgewick J (2001) Altered levels of the synaptosomal associated protein SNAP-25 in hippocampus of subjects with mood disorders and schizophrenia. Neuroreport 12:3257–3262CrossRefPubMedGoogle Scholar
  10. Feng Y, Crosbie J, Wigg K, Pathare T, Ickowicz A, Schachar R, Tannock R, Roberts W, Malone M, Swanson J (2005) The SNAP25 gene as a susceptibility gene contributing to attention-deficit hyperactivity disorder. Mol Psychiatry 10:998–1005CrossRefPubMedGoogle Scholar
  11. Forero DA, Arboleda GH, Vasquez R, Arboleda H (2009) Candidate genes involved in neural plasticity and the risk for attention-deficit hyperactivity disorder: a meta-analysis of 8 common variants. Journal of psychiatry & neuroscience: JPN 34:361Google Scholar
  12. Golimbet V, Alfimova M, Gritsenko I, Lezheiko T, Lavrushina O, Abramova L, Kaleda V, Barkhatova A, Sokolov A, Ebstein R (2010) Association between a synaptosomal protein (SNAP-25) gene polymorphism and verbal memory and attention in patients with endogenous psychoses and mentally healthy subjects. Neurosci Behav Physiol 40:461–465CrossRefPubMedGoogle Scholar
  13. Gosso M, De Geus E, Van Belzen M, Polderman T, Heutink P, Boomsma D, Posthuma D (2006) The SNAP-25 gene is associated with cognitive ability: evidence from a family-based study in two independent Dutch cohorts. Mol Psychiatry 11:878–886CrossRefPubMedGoogle Scholar
  14. Guerini FR, Bolognesi E, Chiappedi M, Manca S, Ghezzo A, Agliardi C, Sotgiu S, Usai S, Matteoli M, Clerici M (2011) SNAP-25 single nucleotide polymorphisms are associated with hyperactivity in autism spectrum disorders. Pharmacol Res 64:283–288CrossRefPubMedGoogle Scholar
  15. Hawi Z, Matthews N, Wagner J, Wallace RH, Butler TJ, Vance A, Kent L, Gill M, Bellgrove MA (2013) DNA variation in the SNAP25 gene confers risk to ADHD and is associated with reduced expression in prefrontal cortex. PLoS One 8:e60274CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hess EJ, Collins KA, Copeland NG, Jenkins NA, Wilson MC (1994) Deletion map of the coloboma (Cm) locus on mouse chromosome 2. Genomics 21:257–261CrossRefPubMedGoogle Scholar
  17. Holt R, Barnby G, Maestrini E, Bacchelli E, Brocklebank D, Sousa I, Mulder EJ, Kantojärvi K, Järvelä I, Klauck SM (2010) Linkage and candidate gene studies of autism spectrum disorders in European populations. Eur J Hum Genet 18:1013–1019CrossRefPubMedPubMedCentralGoogle Scholar
  18. Honer WG, Falkai P, Bayer TA, Xie J, Hu L, Li H-Y, Arango V, Mann JJ, Dwork AJ, Trimble WS (2002) Abnormalities of SNARE mechanism proteins in anterior frontal cortex in severe mental illness. Cereb Cortex 12:349–356CrossRefPubMedGoogle Scholar
  19. Kim J, Biederman J, Arbeitman L, Fagerness J, Doyle A, Petty C, Perlis R, Purcell S, Smoller J, Faraone S (2007) Investigation of variation in SNAP-25 and ADHD and relationship to co-morbid major depressive disorder. Am J Med Genet B Neuropsychiatr Genet 144:781–790CrossRefGoogle Scholar
  20. Kustanovich V, Merriman B, Mcgough J, Mccracken J, Smalley S, Nelson S (2003) Biased paternal transmission of SNAP-25 risk alleles in attention-deficit hyperactivity disorder. Mol Psychiatry 8:309–315CrossRefPubMedGoogle Scholar
  21. Lang J (1999) Molecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion. Eur J Biochem 259:3–17CrossRefPubMedGoogle Scholar
  22. Levy SE, Schultz RT (2009) Autism Lancet 374:1627–1638CrossRefPubMedGoogle Scholar
  23. Lochman J, Balcar VJ, Šťastný F, Šerý O (2013) Preliminary evidence for association between schizophrenia and polymorphisms in the regulatory regions of the ADRA2A, DRD3 and SNAP-25 genes. Psychiatry Res 205:7–12CrossRefPubMedGoogle Scholar
  24. Michaelis RC, Skinner SA, Deason R, Skinner C, Moore CL, Phelan MC (1997) Intersitial deletion of 20p: new candidate region for Hirschsprung disease and autism? Am J Med Genet 71:298–304CrossRefPubMedGoogle Scholar
  25. Mishra PJ, Mishra PJ, Banerjee D, Bertino JR (2008) MiRSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell: introducing microRNA pharmacogenomics. Cell Cycle 7:853–858CrossRefPubMedGoogle Scholar
  26. Moore SJ, Green JS, Fan Y, Bhogal AK, Dicks E, FErnandez BA, Stefanelli M, Murphy C, Cramer BC, Dean J (2005) Clinical and genetic epidemiology of Bardet–Biedl syndrome in Newfoundland: a 22-year prospective, population-based, cohort study. Am J Med Genet A 132:352–360CrossRefPubMedCentralGoogle Scholar
  27. Nemeth N, Kovács-nagy R, Szekely A, Sasvári-szekely M, Rónai Z (2013) Association of impulsivity and polymorphic microRNA-641 target sites in the SNAP-25 gene. PLoS One 8:e84207CrossRefPubMedPubMedCentralGoogle Scholar
  28. Noroozi R, Taheri M, Movafagh A, Mirfakhraie R, Solgi G, Sayad A, Mazdeh M, Darvish H (2016) Glutamate receptor, metabotropic 7 (GRM7) gene variations and susceptibility to autism: a case-control study. Autism Res 9(11):1161–1168Google Scholar
  29. Oyler GA, Higgins GA, Hart RA, Battenberg E, Billingsley M, Bloom FE, Wilson MC (1989) The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J Cell Biol 109:3039–3052CrossRefPubMedGoogle Scholar
  30. Russell VA, Sagvolden T, Johansen EB (2005) Animal models of attention-deficit hyperactivity disorder. Behav Brain Funct 1:1CrossRefGoogle Scholar
  31. Rutter M, Le Couteur A, Lord C, Faggioli R (2003) Autism diagnostic interview-revised. Western Psychological Services, Los AngelesGoogle Scholar
  32. Safari MR, Ghafouri-Fard S, Noroozi R, Sayad A, Omrani MD, Komaki A, Eftekharian MM, Taheri M (2016) FOXP3 gene variations and susceptibility to autism: a case–control study. Gene.Google Scholar
  33. Sarkar K, Bhaduri N, Ghosh P, Sinha S, Ray A, Chatterjee A, Mukhopadhyay K (2012) Role of SNAP25 explored in eastern Indian attention deficit hyperactivity disorder probands. Neurochem Res 37:349–357CrossRefPubMedGoogle Scholar
  34. Sauter S, Von Beust G, Burfeind P, Weise A, Starke H, Liehr T, Zoll B (2003) Autistic disorder and chromosomal mosaicism 46, XY [123]/46, XY, del (20)(pter→ p12. 2)[10]. Am J Med Genet A 120:533–536CrossRefGoogle Scholar
  35. Scarr E, Gray L, Keriakous D, Robinson P, Dean B (2006) Increased levels of SNAP-25 and synaptophysin in the dorsolateral prefrontal cortex in bipolar I disorder. Bipolar Disord 8:133–143CrossRefPubMedGoogle Scholar
  36. Sherry ST, Ward M-H, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29:308–311CrossRefPubMedPubMedCentralGoogle Scholar
  37. Smalley SL (1997) Genetic influences in childhood-onset psychiatric disorders: autism and attention-deficit/hyperactivity disorder. Am J Hum Genet 60:1276–1282CrossRefPubMedPubMedCentralGoogle Scholar
  38. Söderqvist S, Mcnab F, Peyrard-Janvid M, Matsson H, Humphreys K, Kere J, Klingberg T (2010) The SNAP25 gene is linked to working memory capacity and maturation of the posterior cingulate cortex during childhood. Biol Psychiatry 68:1120–1125CrossRefPubMedGoogle Scholar
  39. Spooren W, Lindemann L, Ghosh A, Santarelli L (2012) Synapse dysfunction in autism: a molecular medicine approach to drug discovery in neurodevelopmental disorders. Trends Pharmacol Sci 33:669–684CrossRefPubMedGoogle Scholar
  40. Thompson PM, Sower AC, Perrone-Bizzozero NI (1998) Altered levels of the synaptosomal associated protein SNAP-25 in schizophrenia. Biol Psychiatry 43:239–243CrossRefPubMedGoogle Scholar
  41. Torrey EF, Barci BM, Webster MJ, Bartko JJ, Meador-Woodruff JH, Knable MB (2005) Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol Psychiatry 57:252–260CrossRefPubMedGoogle Scholar
  42. Vawter M, Thatcher L, Usen N, Hyde T, Kleinman J, Freed W (2002) Reduction of synapsin in the hippocampus of patients with bipolar disorder and schizophrenia. Mol Psychiatry 7:571–578CrossRefPubMedGoogle Scholar
  43. Wang, X., Mccoy, P. A., Rodriguiz, R. M., Pan, Y., Je, H. S., Roberts, A. C., Kim, C. J., Berrios, J., Colvin, J. S. & Bousquet-Moore, D. 2011. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Human molecular genetics, ddr212.Google Scholar
  44. Ward LD, Kellis M (2012) HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 40:D930–D934CrossRefPubMedGoogle Scholar
  45. Washbourne P, Thompson PM, Carta M, Costa ET, Mathews JR, Lopez-Benditó G, Molnár Z, Becher MW, Valenzuela CF, Partridge LD (2002) Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat Neurosci 5:19–26PubMedGoogle Scholar
  46. Westra H-J, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, Christiansen MW, Fairfax BP, Schramm K, Powell JE (2013) Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet 45:1238–1243CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wheeler MB, Sheu L, Ghai M, Bouquillon A, Grondin G, Weller U, Beaudoin AR, Bennett M, Trimble W, Gaisano H (1996) Characterization of SNARE protein expression in beta cell lines and pancreatic islets. Endocrinology 137:1340–1348PubMedGoogle Scholar
  48. Williams P, Wetherbee J, Rosenfeld J, Hersh J (2011) 20p11 deletion in a female child with panhypopituitarism, cleft lip and palate, dysmorphic facial features, global developmental delay and seizure disorder. Am J Med Genet A 155:186–191CrossRefGoogle Scholar
  49. Wilson MC (2000) Coloboma mouse mutant as an animal model of hyperkinesis and attention deficit hyperactivity disorder. Neurosci Biobehav Rev 24:51–57CrossRefPubMedGoogle Scholar
  50. Wojcik SM, Brose N (2007) Regulation of membrane fusion in synaptic excitation-secretion coupling: speed and accuracy matter. Neuron 55:11–24CrossRefPubMedGoogle Scholar
  51. Woldemichael, B. T. & Mansuy, I. M. 2015. Micro-RNAs in cognition and cognitive disorders: potential for novel biomarkers and therapeutics. Biochemical pharmacology.Google Scholar
  52. Young CE, Arima K, Xie J, Hu L, Beach TG, Falkai P, Honer WG (1998) SNAP-25 deficit and hippocampal connectivity in schizophrenia. Cereb Cortex 8:261–268CrossRefPubMedGoogle Scholar
  53. Zhang H, Zhu S, Zhu Y, Chen J, Zhang G, Chang H (2011) An association study between SNAP-25 gene and attention-deficit hyperactivity disorder. Eur J Paediatr Neurol 15:48–52CrossRefPubMedGoogle Scholar
  54. Zoghbi HY, Bear MF (2012) Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb Perspect Biol 4:a009886CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mohammad reza Safari
    • 1
  • Mir Davood Omrani
    • 2
    • 3
  • Rezvan Noroozi
    • 4
  • Arezou Sayad
    • 2
  • Shaghayegh Sarrafzadeh
    • 2
  • Alireza Komaki
    • 1
  • Fateme Asadzadeh Manjili
    • 5
  • Mehrdokht Mazdeh
    • 1
    • 6
  • Ali Ghaleiha
    • 7
  • Mohammad Taheri
    • 2
    • 3
  1. 1.Neurophysiology Research CenterHamadan University of Medical SciencesHamadanIran
  2. 2.Department of Medical Genetics, Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
  3. 3.Urogenital Stem Cell Research Center, Shahid Labbafi Nejad Educational HospitalShahid Beheshti University of Medical Sciences, No 23TehranIran
  4. 4.Young Researchers and Elite Club, Ahvaz BranchIslamic Azad UniversityAhvazIran
  5. 5.Department of Medical GeneticsYazd University of Medical SciencesYazdIran
  6. 6.Department of NeurologyHamadan University of Medical sciencesHamadanIran
  7. 7.Research Center for Behavioral Disorders and Substance AbuseHamadan University of Medical SciencesHamadanIran

Personalised recommendations