Advertisement

Journal of Molecular Neuroscience

, Volume 61, Issue 3, pp 325–342 | Cite as

Design-Based Stereology for Evaluation of Histological Parameters

  • Markus Kipp
  • Maren C. Kiessling
  • Tanja Hochstrasser
  • Caroline Roggenkamp
  • Christoph Schmitz
Article

Abstract

Valid quantification of organ volume and total cell numbers are crucial parameters for morphometric studies. The number of a specific cell type cannot be simply deduced from the number of its profiles found in thin tissue sections, as this parameter also depends on cell volume, tissue orientation as well as tissue atrophy. Design-based stereology has become the method of choice for unbiased, reproducible total cell number quantification. Steps described in this protocol include transcardial perfusion of mice, postfixation, and cryoprotection of the region of interest (ROI), followed by the preparation of a systematically and randomly sampled series of thick sections through the entire ROI. Furthermore, it is described how to perform immuno-histochemical staining of such thick cryo-sections, followed by providing a guidance for quantification of the ROI volume, the generation of unbiased virtual counting spaces, and steps to work with these counting spaces to obtain an unbiased estimate of total cell numbers.

Keywords

Stereology Cell number Volume Quantification Unbiased Systematic 

Notes

Acknowledgments

We thank Helga Helten and Astrid Baltruschat for administrative support during the writing of this protocol.

Author Contributions

Markus Kipp and Maren Kiessling contributed equally to the work being described. Markus Kipp and Maren Kiessling wrote the protocol. Tanja Hochstrasser and Caroline Roggenkamp validated the protocol. Christoph Schmitz did supervise the protocol and commented on the manuscript at all stages.

Compliance with Ethical Standards

Competing Financial Interests

This protocol was supported by SRC ProMyelo (MK). No financial support by third parties was obtained, and no benefit was received or will be received directly or indirectly from a commercial party related to the work being described. Christoph Schmitz serves as paid consultant for and receives benefits from MBF Bioscience (Williston, USA), the provider of the Stereo Investigator software. However, Christoph Schmitz has not received any honoraria or consultancy fee in the context of the work being described. Markus Kipp, Maren Kiessling, Tanja Hochstrasser, and Caroline Roggenkamp declare that they have no competing financial interests.

References

  1. Andersen BB, Gundersen HJ (1999) Pronounced loss of cell nuclei and anisotropic deformation of thick sections. J Microsc 196:69–73CrossRefPubMedGoogle Scholar
  2. Baryshnikova LM, Von Bohlen Und Halbach O, Kaplan S, Von Bartheld CS (2006) Two distinct events, section compression and loss of particles (“lost caps”), contribute to z-axis distortion and bias in optical disector counting. Microsc Res Tech 69:738–756. doi: 10.1002/jemt.20345 CrossRefPubMedGoogle Scholar
  3. Brandenberger C, Ochs M, Muhlfeld C (2015) Assessing particle and fiber toxicology in the respiratory system: the stereology toolbox. Particle and fibre toxicology 12:35. doi: 10.1186/s12989-015-0110-8 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brasnjevic I et al (2013) Region-specific neuron and synapse loss in the hippocampus of App/PS1 knock-in mice. Transl Neurosci 4:8–19. doi: 10.2478/s13380-013-0111-8 CrossRefPubMedPubMedCentralGoogle Scholar
  5. de Groot DM et al (2005) 2D and 3D assessment of neuropathology in rat brain after prenatal exposure to methylazoxymethanol, a model for developmental neurotoxicty. Reprod Toxicol 20:417–432. doi: 10.1016/j.reprotox.2005.04.006 CrossRefPubMedGoogle Scholar
  6. Dorph-Petersen KA, Nyengaard JR, Gundersen HJ (2001) Tissue shrinkage and unbiased stereological estimation of particle number and size. J Microsc 204:232–246CrossRefPubMedGoogle Scholar
  7. Gardella D, Hatton WJ, Rind HB, Rosen GD, von Bartheld CS (2003) Differential tissue shrinkage and compression in the z-axis: implications for optical disector counting in vibratome-, plastic- and cryosections. J Neurosci Methods 124:45–59CrossRefPubMedGoogle Scholar
  8. Gundersen HJ et al (1988) The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS 96:857–881CrossRefPubMedGoogle Scholar
  9. Hartlev LB, Nyengaard JR, Thomsen JS, Boel LW, Stengaard-Pedersen K, Hauge EM (2013) Application of design-based stereology for estimation of absolute volume and surface area of the articular and calcified cartilage compartments of undecalcified human femoral heads. J Microsc 251:133–143. doi: 10.1111/jmi.12055 CrossRefPubMedGoogle Scholar
  10. Hatton WJ, von Bartheld CS (1999) Analysis of cell death in the trochlear nucleus of the chick embryo: calibration of the optical disector counting method reveals systematic bias. J Comp Neurol 409:169–186CrossRefPubMedGoogle Scholar
  11. Jacot-Descombes S et al (2012) Decreased pyramidal neuron size in Brodmann areas 44 and 45 in patients with autism. Acta Neuropathol 124:67–79. doi: 10.1007/s00401-012-0976-6 CrossRefPubMedGoogle Scholar
  12. Kiessling MC et al (2013) Intact numbers of cerebellar purkinje and granule cells in sudden infant death syndrome: a stereologic analysis and critical review of neuropathologic evidence. J Neuropathol Exp Neurol 72:861–870. doi: 10.1097/NEN.0b013e3182a31c31 CrossRefPubMedGoogle Scholar
  13. Kiessling MC et al (2014) Cerebellar granule cells are generated postnatally in humans. Brain Struct Funct 219:1271–1286. doi: 10.1007/s00429-013-0565-z CrossRefPubMedGoogle Scholar
  14. Kipp M, van der Valk P, Amor S (2012) Pathology of multiple sclerosis. CNS Neurol Disord Drug Targets 11:506–517CrossRefPubMedGoogle Scholar
  15. Kreczmanski P et al (2007) Volume, neuron density and total neuron number in five subcortical regions in schizophrenia. Brain 130:678–692. doi: 10.1093/brain/awl386 CrossRefPubMedGoogle Scholar
  16. Lemmens MA, Sierksma AS, Rutten BP, Dennissen F, Steinbusch HW, Lucassen PJ, Schmitz C (2011) Age-related changes of neuron numbers in the frontal cortex of a transgenic mouse model of Alzheimer’s disease. Brain Struct Funct 216:227–237. doi: 10.1007/s00429-011-0305-1 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Long JM, Mouton PR, Jucker M, Ingram DK (1999) What counts in brain aging? Design-based stereological analysis of cell number. J Gerontol A Biol Sci Med Sci 54:B407–B417CrossRefPubMedGoogle Scholar
  18. Lucocq JM, Mayhew TM, Schwab Y, Steyer AM, Hacker C (2015) Systems biology in 3D space--enter the morphome. Trends Cell Biol 25:59–64. doi: 10.1016/j.tcb.2014.09.008 CrossRefPubMedGoogle Scholar
  19. Mayhew TM (1991) The new stereological methods for interpreting functional morphology from slices of cells and organs. Exp Physiol 76:639–665CrossRefPubMedGoogle Scholar
  20. Mayhew TM, Burton GJ (1997) Stereology and its impact on our understanding of human placental functional morphology. Microsc Res Tech 38:195–205. doi: 10.1002/(sici)1097-0029(19970701/15)38:1/2<195::aid-jemt20>3.0.co;2-j CrossRefPubMedGoogle Scholar
  21. Muhlfeld C, Hegermann J, Wrede C, Ochs M (2015a) A review of recent developments and applications of morphometry/stereology in lung research. American journal of physiology Lung cellular and molecular physiology 309:L526–L536. doi: 10.1152/ajplung.00047.2015 CrossRefPubMedGoogle Scholar
  22. Muhlfeld C, Hegermann J, Wrede C, Ochs M (2015b) A review of recent developments and applications of morphometry/stereology in lung research. Am J Physiol Lung Cell Mol Physiol:ajplung 00047:02015. doi: 10.1152/ajplung.00047.2015 Google Scholar
  23. Ochs M (2014) Estimating structural alterations in animal models of lung emphysema. Is there a gold standard? Ann Anat 196:26–33. doi: 10.1016/j.aanat.2013.10.004 CrossRefPubMedGoogle Scholar
  24. Prakash YS, Smithson KG, Sieck GC (1994) Application of the Cavalieri principle in volume estimation using laser confocal microscopy. NeuroImage 1:325–333. doi: 10.1006/nimg.1994.1017 CrossRefPubMedGoogle Scholar
  25. Puelles VG et al (2014) Design-based stereological methods for estimating numbers of glomerular podocytes. Ann Anat 196:48–56. doi: 10.1016/j.aanat.2013.04.007 CrossRefPubMedGoogle Scholar
  26. Reiberger T et al (2015) An orthotopic mouse model of hepatocellular carcinoma with underlying liver cirrhosis. Nat Protoc 10:1264–1274. doi: 10.1038/nprot.2015.080 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Rutten BP et al (2003) No alterations of hippocampal neuronal number and synaptic Bouton number in a transgenic mouse model expressing the beta-cleaved C-terminal APP fragment. Neurobiol Dis 12:110–120CrossRefPubMedGoogle Scholar
  28. Schipke J et al (2014) The number of cardiac myocytes in the hypertrophic and hypotrophic left ventricle of the obese and calorie-restricted mouse heart. J Anat 225:539–547. doi: 10.1111/joa.12236 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Schmitt A et al (2009) Stereologic investigation of the posterior part of the hippocampus in schizophrenia. Acta Neuropathol 117:395–407. doi: 10.1007/s00401-008-0430-y CrossRefPubMedGoogle Scholar
  30. Schmitz C, Hof PR (2000) Recommendations for straightforward and rigorous methods of counting neurons based on a computer simulation approach. J Chem Neuroanat 20:93–114CrossRefPubMedGoogle Scholar
  31. Schmitz C, Hof PR (2005) Design-based stereology in neuroscience. Neuroscience 130:813–831. doi: 10.1016/j.neuroscience.2004.08.050 CrossRefPubMedGoogle Scholar
  32. Schmitz C et al (2004) Hippocampal neuron loss exceeds amyloid plaque load in a transgenic mouse model of Alzheimer’s disease. Am J Pathol 164:1495–1502. doi: 10.1016/s0002-9440(10)63235-x CrossRefPubMedPubMedCentralGoogle Scholar
  33. Schmitz C, Born M, Dolezel P, Rutten BP, de Saint-Georges L, Hof PR, Korr H (2005) Prenatal protracted irradiation at very low dose rate induces severe neuronal loss in rat hippocampus and cerebellum. Neuroscience 130:935–948. doi: 10.1016/j.neuroscience.2004.08.034 CrossRefPubMedGoogle Scholar
  34. Schmitz C, Eastwood BS, Tappan SJ, Glaser JR, Peterson DA, Hof PR (2014) Current automated 3D cell detection methods are not a suitable replacement for manual stereologic cell counting. Front Neuroanat 8:27. doi: 10.3389/fnana.2014.00027 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Song R, Preston G, Khalili A, El-Dahr SS, Yosypiv IV (2012) Angiotensin II regulates growth of the developing papillas ex vivo. American journal of physiology Renal physiology 302:F1112–F1120. doi: 10.1152/ajprenal.00435.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Sterio DC (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134:127–136CrossRefPubMedGoogle Scholar
  37. Uppal N, Wicinski B, Buxbaum JD, Heinsen H, Schmitz C, Hof PR (2014) Neuropathology of the anterior midcingulate cortex in young children with autism. J Neuropathol Exp Neurol 73:891–902. doi: 10.1097/nen.0000000000000108 CrossRefPubMedGoogle Scholar
  38. van Kooten IA et al (2008) Neurons in the fusiform gyrus are fewer and smaller in autism. Brain 131:987–999. doi: 10.1093/brain/awn033 CrossRefPubMedGoogle Scholar
  39. Vogt J et al (2009) Lower motor neuron loss in multiple sclerosis and experimental autoimmune encephalomyelitis. Ann Neurol 66:310–322. doi: 10.1002/ana.21719 CrossRefPubMedGoogle Scholar
  40. Wirenfeldt M, Dalmau I, Finsen B (2003) Estimation of absolute microglial cell numbers in mouse fascia dentata using unbiased and efficient stereological cell counting principles. Glia 44:129–139. doi: 10.1002/glia.10277 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of NeuroanatomyLudwig-Maximilians University of MunichMunichGermany

Personalised recommendations