Skip to main content

Advertisement

Log in

Glial-Like Differentiation Potential of Human Mature Adipocytes

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The potential ability to differentiate dedifferentiated adipocytes into a neural lineage is attracting strong interest as an emerging method of producing model cells for the treatment of a variety of neurological diseases. Here, we describe the efficient conversion of dedifferentiated adipocytes into a neural-like cell population. These cells grew in neurosphere-like structures and expressed a high level of the early neuroectodermal marker Nestin. These neurospheres could proliferate and express stemness genes, suggesting that these cells could be committed to the neural lineage. After neural induction, NeuroD1, Sox1, Double Cortin, and Eno2 were not expressed. Patch clamp data did not reveal different electrophysiological properties, indicating the inability of these cells to differentiate into mature neurons. In contrast, the differentiated cells expressed a high level of CLDN11, as demonstrated using molecular method, and stained positively for the glial cell markers CLDN11 and GFAP, as demonstrated using immunocytochemistry. These data were confirmed by quantitative results for glial cell line-derived neurotrophic factor production, which showed a higher secretion level in neurospheres and the differentiated cells compared with the untreated cells. In conclusion, our data demonstrate morphological, molecular, and immunocytochemical evidence of initial neural differentiation of mature adipocytes, committing to a glial lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anghileri E, Marconi S, Pignatelli A et al (2008) Neuronal differentiation potential of human adipose-derived mesenchymal stem cells. Stem Cells Dev 17(5):909–916

    Article  CAS  PubMed  Google Scholar 

  • Colter DC, Class R, Di Girolamo CM, Prockop DJ (2000) Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci U S A 97:3213–3218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Matteis R, Zingaretti MC, Murano I et al (2009) In vivo physiological transdifferentiation of adult adipose cells. Stem Cells 27(11):2761–2768

    Article  PubMed  Google Scholar 

  • Gage FH, Coates PW, Palmer TD (1995a) Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci U S A 92:11879–11883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gage FH, Ray J, Fisher LJ (1995b) Isolation, characterization, and use of stem cells from the CNS. Annu Rev Neurosci 18:159–192

    Article  CAS  PubMed  Google Scholar 

  • Hermann A, Gastl R, Liebau S et al (2004) Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci 117:4411–4422

    Article  CAS  PubMed  Google Scholar 

  • Javazon EH, Colter DC, Schwarz EJ, Prockop DJ (2001) Rat marrow stromal cells are more sensitive to plating density and expand more rapidly from single-cell derived colonies than human marrow stromal cells. Stem Cells 19:219–225

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Jahagirdar BN, Reinhardt RL et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Henderson D, Blackstad M et al (2003) Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc Natl Acad Sci U S A 100:11854–11860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johansson CB, Momma S, Clarke DL et al (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34

    Article  CAS  PubMed  Google Scholar 

  • Jumabay M, Abdmaulen R, Ly A et al (2014) Pluripotent stem cells derived from mouse and human white mature adipocytes. Stem Cells Transl Med 3(2):161–171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu J, Song L, Jiang C et al (2012) Electrophysiological properties and synaptic function of mesenchymal stem cells during neurogenic differentiation—a mini-review. Int J Artif Organs 35(5):323–337

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu P, Blesch A, Tuszynski MH (2004) Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J Neurosci Res 77(2):174–191

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Kano K, Kondo D et al (2008) Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential. J Cell Physiol 215(1):210–222

    Article  CAS  PubMed  Google Scholar 

  • Mizuno H (2009) Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review. J Nihon Med Sch 76(2):56–66

    Article  Google Scholar 

  • Neuhuber B, Gallo G, Howard L et al (2004) Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res 77(2):192–204

    Article  CAS  PubMed  Google Scholar 

  • Pereira RF, Halford KW, O’Hara MD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  Google Scholar 

  • Poloni A, Maurizi G, Leoni P et al (2012) Human dedifferentiated adipocytes show similar properties to bone marrow-derived mesenchymal stem cells. Stem Cells 30(5):965–974

    Article  CAS  PubMed  Google Scholar 

  • Renfranz PJ, Cunningham MG, McKay RDG (1991) Region-specific differentiation of hippocampal stem cell line HiB5 upon implantation into the developing mammalian brain. Cell 66:713–729

    Article  CAS  PubMed  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164:247–256

    Article  CAS  PubMed  Google Scholar 

  • Scuteri A, Miloso M, Foudah D et al (2011) Mesenchymal stem cells neuronal differentiation ability: a real perspective for nervous system repair? Curr Stem Cell Res Ther 6(2):82–92

    Article  CAS  PubMed  Google Scholar 

  • Wei S, Zan L, Hausman GJ et al (2013) Dedifferentiated adipocyte-derived progeny cells (DFAT cells): potential stem cells of adipose tissue. Adipocyte 2(3):122–127

    Article  PubMed Central  PubMed  Google Scholar 

  • Westerlund U, Moe MC, Varghese M et al (2003) Stem cells from the adult human brain develop into functional neurons in culture. Exp Cell Res 289:378–383

    Article  CAS  PubMed  Google Scholar 

  • Wislet-Gendebien S, Hans G, Leprince P et al (2005) Plasticity of cultured mesenchymal stem cells: switch from Nestin -positive to excitable neuron-like phenotype. Stem Cells 23:392–402

    Article  CAS  PubMed  Google Scholar 

  • Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Mu J, Li Q et al (2008) A simple and efficient method for deriving neurospheres from bone marrow stromal cells. Biochem Biophys Res Commun 372(4):520–524

    Article  CAS  PubMed  Google Scholar 

  • Zhang HH, Kumar S, Barnett AH, Eggo MC (2000) Ceiling culture of mature human adipocytes: use in studies of adipocyte functions. J Endocrinol 164(2):119–128

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Poloni.

Additional information

The authors Antonella Poloni and Giulia Maurizi contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poloni, A., Maurizi, G., Foia, F. et al. Glial-Like Differentiation Potential of Human Mature Adipocytes. J Mol Neurosci 55, 91–98 (2015). https://doi.org/10.1007/s12031-014-0345-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0345-0

Keywords

Navigation