Skip to main content
Log in

Molecular Modeling Evidence for His438 Flip in the Mechanism of Butyrylcholinesterase Hysteretic Behavior

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Cholinesterases display a hysteretic behavior with certain substrates and irreversible inhibitors. For years, this behavior has remained puzzling. However, several lines of evidence indicated that it is caused by perturbation of the catalytic triad and its water environment. In the present study, using molecular dynamics simulations of Ala328Cys BuChE mutant and wild-type BuChE in the absence and presence of a co-solvent (sucrose, glycerol), we provide evidence that hysteresis originates in a flip of the catalytic triad histidine (His438). This event is controlled by water molecules that interact with active site residues. The physiological significance of this phenomenon is still an issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Badiou A, Froment MT, Fournier D, Masson P, Belzunces LP (2008) Hysteresis of insect acetylcholinesterase. Chem Biol Interact 175:410–412

    Article  CAS  PubMed  Google Scholar 

  • Bakan A, Meireles LM, Bahar I (2011) ProDy: protein dynamics inferred from theory and experiments. Bioinformatics 27:1575–1577

    Article  CAS  PubMed  Google Scholar 

  • Best RB, Zhu X, Shim J et al (2012) Optimization of the Additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J Chem Theory Comput 8:3257–3273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carletti E, Schopfer LM, Colletier J-P et al (2011) Reaction of cresyl saligenin phosphate, the organophosphorus implicated in the aerotoxic syndrome, with human cholinesterases: mechanistic studies employing kinetics, mass spectrometry and X-ray structure analysis. Chem Res Toxicol 24:797–808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hatcher ER, Guvench O, MacKerell AD (2009) CHARMM additive all-atom force field for acyclic polyalcohols, acyclic carbohydrates, and inositol. J Chem Theory Comput 5:1315–1327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hrabovska A, Debouzy JC, Froment MT, Devinsky F, Paulikova I, Masson P (2006) Rat butyrylcholinesterase-catalysed hydrolysis of N-alkyl homologues of benzoylcholine. FEBS J 273:1185–1197

    Article  CAS  PubMed  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  • Khan MT (2009) Molecular interactions of cholinesterases inhibitors using in silico methods: current status and future prospects. New Biotechnol 25:331–346

    Article  CAS  Google Scholar 

  • Kwasnieski O, Verdier L, Malacria M, Derat E (2009) Fixation of the two tabun isomers in acetylcholinesterase: a QM/MM study. J Phys Chem B 113:10001–10007

    Article  CAS  PubMed  Google Scholar 

  • Loudwig S, Nicolet Y, Masson P et al (2003) Photoreversible inhibition of cholinesterases: catalytic serine-labeled caged butyrylcholinesterase. Chembiochem 4:762–767

    Article  CAS  PubMed  Google Scholar 

  • Lushchekina S, Grigorenko B, Morozov D, Polyakov I, Nemukhin A, Varfolomeev S (2010) Modeling of the mechanism of hydrolysis of succinylcholine in the active site of native and modified (Asp70Gly) human butyrylcholinesterase. Russ Chem Bull 59:55–60

    Article  CAS  Google Scholar 

  • Lushchekina S. V., Polomskih V. S., Varfolomeev S. D., Masson P. (2013) Molecular modeling of inhibition of butyrylcholinesterase by cresyl saligenin phosphate. Russian Chemical Bulletin. (In press)

  • Masson P (2012) Time-dependent kinetic complexities in cholinesterase-catalyzed reactions. Biochemistry (Mosc) 77:1147–1161

    Article  CAS  Google Scholar 

  • Masson P, Froment M-T, Bartels CF, Lockridge O (1996) Asp70 in the peripheral anionic site of human butyrylcholinesterase. Eur J Biochem 235:36–48

    Article  CAS  PubMed  Google Scholar 

  • Masson P, Clery C, Guerra P, Redslob A, Albaret C, Fortier PL (1999) Hydration change during the aging of phosphorylated human butyrylcholinesterase: importance of residues aspartate-70 and glutamate-197 in the water network as probed by hydrostatic and osmotic pressures. Biochem J 343:361–369

    Article  CAS  PubMed  Google Scholar 

  • Masson P, Froment MT, Fort S et al (2002) Butyrylcholinesterase-catalyzed hydrolysis of N-methylindoxyl acetate: analysis of volume changes upon reaction and hysteretic behavior. Biochim Biophys Acta 1597:229–243

    Article  CAS  PubMed  Google Scholar 

  • Masson P, Goldstein BN, Debouzy JC, Froment MT, Lockridge O, Schopfer LM (2004) Damped oscillatory hysteretic behaviour of butyrylcholinesterase with benzoylcholine as substrate. Eur J Biochem 271:220–234

    Article  CAS  PubMed  Google Scholar 

  • Masson P, Schopfer LM, Froment MT et al (2005) Hysteresis of butyrylcholinesterase in the approach to steady-state kinetics. Chem Biol Interact 157–158:143–152

    Article  PubMed  Google Scholar 

  • Masson P, Froment MT, Gillon E, Nachon F, Darvesh S, Schopfer LM (2007) Kinetic analysis of butyrylcholinesterase-catalyzed hydrolysis of acetanilides. Biochim Biophys Acta 1774:1139–1147

    Article  CAS  PubMed  Google Scholar 

  • Masson P, Lushchekina S, Schopfer LM, Lockridge O (2013) Effects of viscosity and osmotic stress on the reaction of human butyrylcholinesterase with cresyl saligenin phosphate, a toxicant related to the aerotoxic syndrome: kinetic and molecular dynamics studies. Biochem J 454:387–399

    Article  CAS  PubMed  Google Scholar 

  • Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nemukhin AV, Lushchekina SV, Bochenkova AV, Golubeva AA, Varfolomeev SD (2008) Characterization of a complete cycle of acetylcholinesterase catalysis by ab initio QM/MM modeling. J Mol Model 14:409–416

    Article  CAS  PubMed  Google Scholar 

  • Ngamelue MN, Homma K, Lockridge O, Asojo OA (2007) Crystallization and X-ray structure of full-length recombinant human butyrylcholinesterase. Acta Crystallogr F 63:723–727

    Article  CAS  Google Scholar 

  • Nicolet Y, Lockridge O, Masson P, Fontecilla-Camps JC, Nachon F (2003) Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J Biol Chem 278:41141–41147

    Article  CAS  PubMed  Google Scholar 

  • Pedretti A, Villa L, Vistoli G (2004) VEGA—an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J Comp Aided Mol Des 18:167–173

    Article  CAS  Google Scholar 

  • Peters J, Trovaslet M, Trapp M et al (2012) Activity and molecular dynamics relationship within the family of human cholinesterases. Phys Chem Chem Phys 14:6764–6770

    Article  CAS  Google Scholar 

  • Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quinn DM (1987) Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states. Chem Rev 87:955–979

    Article  CAS  Google Scholar 

  • Raman EP, Guvench O, MacKerell AD (2010) CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses. J Phys Chem B 114:12981–12994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sadovnichy V, Tikhonravov A, Voevodin V, Opanasenko V (2013) “Lomonosov”: supercomputing at Moscow State University. In: Vetter JS (ed) Contemporary high performance computing: from petascale toward exascale. CRC, Boca Raton, pp 283–307

    Google Scholar 

  • Tai K, Shen T, Borjesson U, Philippopoulos M, McCammon JA (2001) Analysis of a 10-ns molecular dynamics simulation of mouse acetylcholinesterase. Biophys J 81:715–724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Valiev M, Bylaska EJ, Govind N et al (2010) NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun 181:1477–1489

    Article  CAS  Google Scholar 

  • Word JM, Lovell SC, Richardson JS, Richardson DC (1999) Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol 285:1735–1747

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Russian Foundation for Basic Research (project 12-03-31039-mol_a) and Fellowship of the President of Russia (СП-185.2012.4). We thank the Supercomputing Center of Lomonosov Moscow State University for providing computational facilities. We thank Prof. Vytas Švedas (Lomonosov Moscow State University) for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofya V. Lushchekina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lushchekina, S.V., Nemukhin, A.V., Varfolomeev, S.D. et al. Molecular Modeling Evidence for His438 Flip in the Mechanism of Butyrylcholinesterase Hysteretic Behavior. J Mol Neurosci 52, 434–445 (2014). https://doi.org/10.1007/s12031-013-0178-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0178-2

Keywords

Navigation