Skip to main content
Log in

Anti-Necroptosis Chemical Necrostatin-1 Can Also Suppress Apoptotic and Autophagic Pathway to Exert Neuroprotective Effect in Mice Intracerebral Hemorrhage Model

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Necroptosis was recently discovered as one form of programmed cell death (PCD) and could be specifically inhibited by necrostatin-1. The aim of this study was to examine the effect of necrostatin-1 on brain injury and investigate the role of necrostatin-1 on the other two types PCD (apoptosis and autophagic cell death) in a mouse intracerebral hemorrhage (ICH) model. Male ICR mice received an infusion of type IV collagenase to induce ICH or saline as control into the left striatum. In the presence of vehicle, 3-MA, zVAD, and necrostatin-1 were pretreated with a single intracerebroventricular (i.c.v.) injection in the ipsilateral ventricle 15 min before ICH, respectively. Compared with vehicle groups, necrostatin-1 treatment significantly reduced injury volume and propidium iodide-positive cells at 24 and 72 h after ICH. Immunoblotting analysis showed that necrostatin-1 treatment suppressed autophagic-associated proteins (LC3-II, Beclin-1) and maintained p62 at normal level at 24 and 72 h after ICH. In addition, necrostatin-1 treatment enhanced the protein level of Bcl-2 and decreased the protein level of cleaved caspase-3 and the Beclin-1/Bcl-2 ratio at 24 and 72 h after ICH. Moreover, both 3-MA and necrostatin-1 treatment could suppress cleaved caspase-3 and LC3-II production, whereas zVAD treatment could inhibit caspase-3 cleavage but increased LC3-II protein levels at 72 h after ICH. Taken together, the data demonstrated for the first time that the specific inhibitor necrostatin-1 suppressed apoptosis and autophagy to exert these neuroprotective effects after ICH and that there existed a cross-talk among necroptosis, apoptosis, and autophagy after ICH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PCD:

Programmed cell death

ICH:

Intracerebral hemorrhage

3-MA:

3-Methyladenine

zVAD:

Pan-caspase inhibitor Z-VAD-FMK

i.c.v.:

Intracerebroventricular

PI:

Propidium iodide

LC3:

Microtubule-associated protein-1A/1B light chain 3

p62/SQSTM1:

Sequestosome 1 protein

References

  • Chavez-Valdez R, Martin LJ, Flock DL, Northington FJ (2012) Necrostatin-1 attenuates mitochondrial dysfunction in neurons and astrocytes following neonatal hypoxia–ischemia. Neuroscience 219:192–203

    Article  CAS  PubMed  Google Scholar 

  • Christofferson DE, Yuan J (2010) Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol 22:263–268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119

    Article  CAS  PubMed  Google Scholar 

  • Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X et al (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321

    Article  CAS  PubMed  Google Scholar 

  • Degterev A, Yuan J (2008) Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 9:378–390

    Article  CAS  PubMed  Google Scholar 

  • Ferro JM (2006) Update on intracerebral haemorrhage. J Neurol 253:985–999

    Article  PubMed  Google Scholar 

  • Fox R, Aubert M (2008) Flow cytometric detection of activated caspase-3. Methods Mol Biol 414:47–56

    CAS  PubMed  Google Scholar 

  • Galluzzi L, Kroemer G (2008) Necroptosis: a specialized pathway of programmed necrosis. Cell 135:1161–1163

    Article  CAS  PubMed  Google Scholar 

  • Grotta J (2002) Neuroprotection is unlikely to be effective in humans using current trial designs. Stroke 33:306–307

    PubMed  Google Scholar 

  • Halestrap AP, Doran E, Gillespie JP, O’Toole A (2000) Mitochondria and cell death. Biochem Soc Trans 28:170–177

    CAS  PubMed  Google Scholar 

  • He Y, Wan S, Hua Y, Keep RF, Xi G (2007) Autophagy after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab 28:897–905

    Article  PubMed  Google Scholar 

  • He Y, Liu W, Koch LG, Britton SL, Keep RF, Xi G et al (2013) Susceptibility to intracerebral hemorrhage-induced brain injury segregates with low aerobic capacity in rats. Neurobiol Dis 49:22–28

    Article  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  CAS  PubMed  Google Scholar 

  • Komatsu M, Ichimura Y (2010) Physiological significance of selective degradation of p62 by autophagy. FEBS Lett 584:1374–1378

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Cai H, Wang Z, Li J, Wang K, Yu Z et al (2013) Induction of autophagy by cystatin C: a potential mechanism for prevention of cerebral vasospasm after experimental subarachnoid hemorrhage. Eur J Med Res 18:21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luo CL, Li BX, Li QQ, Chen XP, Sun YX, Bao HJ et al (2011) Autophagy is involved in traumatic brain injury-induced cell death and contributes to functional outcome deficits in mice. Neuroscience 184:54–63

    Article  CAS  PubMed  Google Scholar 

  • Matsushita K, Meng W, Wang X, Asahi M, Asahi K, Moskowitz MA et al (2000) Evidence for apoptosis after intercerebral hemorrhage in rat striatum. J Cereb Blood Flow Metab 20:396–404

    Article  CAS  PubMed  Google Scholar 

  • Munakata M, Shirakawa H, Nagayasu K, Miyanohara J, Miyake T, Nakagawa T et al (2013) Transient receptor potential canonical 3 inhibitor Pyr3 improves outcomes and attenuates astrogliosis after intracerebral hemorrhage in mice. Stroke 44:1981–1987

    Article  CAS  PubMed  Google Scholar 

  • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    Article  CAS  PubMed  Google Scholar 

  • Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939

    Article  CAS  PubMed  Google Scholar 

  • Polster BM, Fiskum G (2004) Mitochondrial mechanisms of neural cell apoptosis. J Neurochem 90:1281–1289

    Article  CAS  PubMed  Google Scholar 

  • Qureshi AI, Suri MFK, Ostrow PT, Kim SH, Ali Z, Shatla AA et al (2003) Apoptosis as a form of cell death in intracerebral hemorrhage. Neurosurgery 52:1041–1048

    Article  PubMed  Google Scholar 

  • Rosenbaum DM, Degterev A, David J, Rosenbaum PS, Roth S, Grotta JC et al (2009) Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model. J Neurosci Res 88:1569–1576

    Google Scholar 

  • Sadasivan S, Dunn WA, Hayes RL, Wang KKW (2008) Changes in autophagy proteins in a rat model of controlled cortical impact induced brain injury. Biochem Biophys Res Commun 373:478–481

    Article  CAS  PubMed  Google Scholar 

  • Smith CCT, Yellon DM (2011) Necroptosis, necrostatins and tissue injury. J Cell Mol Med 15:1797–1806

    Article  CAS  PubMed  Google Scholar 

  • Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G, Declercq W et al (1998) Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 187:1477–1485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Rogove AD, Tsirka AE, Tsirka SE (2003) Protective role of tuftsin fragment 1–3 in an animal model of intracerebral hemorrhage. Ann Neurol 54:655–664

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Huang Y, Zhang M, Wang L, Wang Y, Zhang L et al (2013) [Gly14]-Humanin offers neuroprotection through glycogen synthase kinase-3β inhibition in a mouse model of intracerebral hemorrhage. Behav Brain Res 247:132–139

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-Q, Wang L, Zhang M-Y, Wang T, Bao H-J, Liu W-L et al (2012) Necrostatin-1 suppresses autophagy and apoptosis in mice traumatic brain injury model. Neurochem Res 37:1849–1858

    Article  CAS  PubMed  Google Scholar 

  • Whalen MJ, Dalkara T, You Z, Qiu J, Bermpohl D, Mehta N et al (2007) Acute plasmalemma permeability and protracted clearance of injured cells after controlled cortical impact in mice. J Cereb Blood Flow Metab 28:490–505

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu YT, Tan HL, Huang Q, Kim YS, Pan N, Ong WY et al (2008) Autophagy plays a protective role during zVAD-induced necrotic cell death. Autophagy 4:457–466

    CAS  PubMed  Google Scholar 

  • Wu YT, Tan HL, Huang Q, Sun XJ, Zhu X, Shen HM (2011) zVAD-induced necroptosis in L929 cells depends on autocrine production of TNFalpha mediated by the PKC-MAPKs-AP-1 pathway. Cell Death Differ 18:26–37

    Article  CAS  PubMed  Google Scholar 

  • Xi G, Keep RF, Hoff JT (2006) Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol 5:53–63

    Article  PubMed  Google Scholar 

  • Xu X, Chua CC, Kong J, Kostrzewa RM, Kumaraguru U, Hamdy RC et al (2007) Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cells. J Neurochem 103:2004–2014

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Chua K-W, Chua CC, Liu C-F, Hamdy RC, Chua BHL (2010) Synergistic protective effects of humanin and necrostatin-1 on hypoxia and ischemia/reperfusion injury. Brain Res 1355:189–194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • You Z, Savitz SI, Yang J, Degterev A, Yuan J, Cuny GD et al (2008) Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice. J Cereb Blood Flow Metab 28:1564–1573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang N, Chen Y, Jiang R, Li E, Chen X, Xi Z et al (2011) PARP and RIP 1 are required for autophagy induced by 11′-deoxyverticillin A, which precedes caspase-dependent apoptosis. Autophagy 7:598–612

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Tao L, Tejima-Mandeville E, Qiu J, Park J, Garber K et al (2012) Plasmalemma permeability and necrotic cell death phenotypes after intracerebral hemorrhage in mice. Stroke 43:524–531

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (no. 81271379, 81373251, no. 81172911, no. 81301039), and the science and technology development project of Suzhou (no. SZP201304).

Conflict of Interest

There is no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiping Chen or Luyang Tao.

Additional information

Pan Chang, Wenwen Dong, and Mingyang Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, P., Dong, W., Zhang, M. et al. Anti-Necroptosis Chemical Necrostatin-1 Can Also Suppress Apoptotic and Autophagic Pathway to Exert Neuroprotective Effect in Mice Intracerebral Hemorrhage Model. J Mol Neurosci 52, 242–249 (2014). https://doi.org/10.1007/s12031-013-0132-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0132-3

Keywords

Navigation