Skip to main content
Log in

Novel Insights into M3 Muscarinic Acetylcholine Receptor Physiology and Structure

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Recent studies with M3 muscarinic acetylcholine receptor (M3R) mutant mice suggest that drugs selectively targeting this receptor subtype may prove useful for the treatment of various pathophysiological conditions. Moreover, the use of M3R-based designer G protein-coupled receptors (GPCRs) has provided novel insights into how Gq-coupled GPCRs can modulate whole-body glucose homeostasis by acting on specific peripheral cell types. More recently, we succeeded in using X-ray crystallography to determine the structure of the M3R bound to the bronchodilating drug tiotropium, a muscarinic antagonist (inverse agonist). This new structural information should facilitate the development of orthosteric or allosteric M3R-selective drugs that are predicted to have considerable therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez-Curto E, Prihandoko R, Tautermann CS, Zwier JM, Pediani JD, Lohse MJ, Hoffmann C, Tobin AB, Milligan G (2011) Developing chemical genetic approaches to explore G protein-coupled receptor function: validation of the use of a receptor activated solely by synthetic ligand (RASSL). Mol Pharmacol 80:1033–1046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 104:5163–5168

    Article  PubMed Central  PubMed  Google Scholar 

  • Arteaga-Solis E, Zee T, Emala CW, Vinson C, Wess J, Karsenty G (2013) Inhibition of leptin regulation of parasympathetic signaling as a cause of extreme body weight-associated asthma. Cell Metab 17:35–48

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ (2000) The pharmacological properties of tiotropium. Chest 117:63S–66S

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ (2004) The role of anticholinergics in chronic obstructive pulmonary disease. Am J Med 117(Suppl 12A):24S–32S

    CAS  PubMed  Google Scholar 

  • Bernardo AS, Hay CW, Docherty K (2008) Pancreatic transcription factors and their role in the birth, life and survival of the pancreatic beta cell. Mol Cell Endocrinol 294:1–9

    Article  CAS  PubMed  Google Scholar 

  • Blackmore PF, Hughes BP, Shuman EA, Exton JH (1982) α-Adrenergic activation of phosphorylase in liver cells involves mobilization of intracellular calcium without influx of extracellular calcium. J Biol Chem 257:190–197

    CAS  PubMed  Google Scholar 

  • Caulfield MP, Birdsall NJ (1998) International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279–290

    CAS  PubMed  Google Scholar 

  • Cerf ME (2006) Transcription factors regulating beta-cell function. Eur J Endocrinol 155:671–679

    Article  CAS  PubMed  Google Scholar 

  • Clair C, Tran D, Boucherie S, Claret M, Tordjmann T, Combettes L (2003) Hormone receptor gradients supporting directional Ca2+ signals: direct evidence in rat hepatocytes. J Hepatol 39:489–495

    Article  CAS  PubMed  Google Scholar 

  • D'Alessio D (2011) The role of dysregulated glucagon secretion in type 2 diabetes. Diabetes Obes Metab 13(Suppl 1):126–132

    Article  PubMed  Google Scholar 

  • DeFronzo RA (2004) Pathogenesis of type 2 diabetes mellitus. Med Clin N Am 88:787–835

    Article  CAS  PubMed  Google Scholar 

  • Digby GJ, Shirey JK, Conn PJ (2010) Allosteric activators of muscarinic receptors as novel approaches for treatment of CNS disorders. Mol BioSyst 6:1345–1354

    Article  CAS  PubMed  Google Scholar 

  • Exton JH, Blackmore PF, El-Refai MF, Dehaye JP, Strickland WG, Cherrington AD, Chan TM, Assimacopoulos-Jeannet FD, Chrisman TD (1981) Mechanisms of hormonal regulation of liver metabolism. Adv Cyclic Nucleotide Res 14:491–505

    CAS  PubMed  Google Scholar 

  • Gautam D, Gavrilova O, Jeon J, Pack S, Jou W, Cui Y, Li JH, Wess J (2006a) Beneficial metabolic effects of M3 muscarinic acetylcholine receptor deficiency. Cell Metab 4:363–375

    Article  CAS  PubMed  Google Scholar 

  • Gautam D, Han SJ, Hamdan FF, Jeon J, Li B, Li JH, Cui Y, Mears D, Lu H, Deng C, Heard T, Wess J (2006b) A critical role for β cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab 3:449–461

    Article  CAS  PubMed  Google Scholar 

  • Gautam D, Jeon J, Starost MF, Han SJ, Hamdan FF, Cui Y, Parlow AF, Gavrilova O, Szalayova I, Mezey E, Wess J (2009) Neuronal M3 muscarinic acetylcholine receptors are essential for somatotroph proliferation and normal somatic growth. Proc Natl Acad Sci U S A 106:6398–6403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Griebel G, Stemmelin J, Gal CS, Soubrié P (2005) Non-peptide vasopressin V1b receptor antagonists as potential drugs for the treatment of stress-related disorders. Curr Pharm Des 11:1549–1559

    Article  CAS  PubMed  Google Scholar 

  • Guettier JM, Gautam D, Scarselli M, Ruiz de Azua I, Li JH, Rosemond E, Ma X, Gonzalez FJ, Armbruster BN, Lu H, Roth BL, Wess J (2009) A chemical-genetic approach to study G protein regulation of beta cell function in vivo. Proc Natl Acad Sci U S A 106:19197–19202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haga K, Kruse AC, Asada H, Yurugi-Kobayashi T, Shiroishi M, Zhang C, Weis WI, Okada T, Kobilka BK, Haga T, Kobayashi T (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482:547–551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hart AW, Baeza N, Apelqvist A, Edlund H (2000) Attenuation of FGF signalling in mouse beta-cells leads to diabetes. Nature 408:864–868

    Article  CAS  PubMed  Google Scholar 

  • Jain S, Ruiz de Azua I, Lu H, White MF, Guettier JM, Wess J (2013) Chronic activation of a designer Gq-coupled receptor improves β-cell function. J Clin Invest 123:1750–1762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang G, Zhang BB (2003) Glucagon and regulation of glucose metabolism. Am J Physiol Endocrinol Metab 284:E671–E678

    CAS  PubMed  Google Scholar 

  • Kaneto H, Miyatsuka T, Kawamori D, Yamamoto K, Kato K, Shiraiwa T, Katakami N, Yamasaki Y, Matsuhisa M, Matsuoka TA (2008) PDX-1 and MafA play a crucial role in pancreatic beta-cell differentiation and maintenance of mature beta-cell function. Endocr J 55:235–252

    Article  CAS  PubMed  Google Scholar 

  • Keov P, Sexton PM, Christopoulos A (2011) Allosteric modulation of G protein-coupled receptors: a pharmacological perspective. Neuropharmacology 60:24–35

    Article  CAS  PubMed  Google Scholar 

  • Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM, Rosemond E, Green HF, Liu T, Chae PS, Dror RO, Shaw DE, Weis WI, Wess J, Kobilka B (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482:552–556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li JH, Gautam D, Han SJ, Guettier JM, Cui Y, Lu H, Deng C, O'Hare J, Jou W, Gavrilova O, Buettner C, Wess J (2009) Hepatic muscarinic acetylcholine receptors are not critically involved in maintaining glucose homeostasis in mice. Diabetes 58:2776–2787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li JH, Jain S, McMillin SM, Cui Y, Gautam D, Sakamoto W, Lu H, Jou W, McGuinness OP, Gavrilova O, Wess J (2013) A novel experimental strategy to assess the metabolic effects of selective activation of a Gq-coupled receptor in hepatocytes in male mice in vivo. Endocrinology. doi:10.1210/en.2012-2127

  • Lin HV, Accili D (2011) Hormonal regulation of hepatic glucose production in health and disease. Cell Metab 14:9–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakajima K, Wess J (2012) Design and functional characterization of a novel, arrestin-biased designer G protein-coupled receptor. Mol Pharmacol 82:575–582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Postic C, Dentin R, Girard J (2004) Role of the liver in the control of carbohydrate and lipid homeostasis. Diabetes Metab 30:398–408

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal S, Rajagopal K, Lefkowitz RJ (2010) Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 9:373–386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raufman JP, Samimi R, Shah N, Khurana S, Shant J, Drachenberg C, Xie G, Wess J, Cheng K (2008) Genetic ablation of M3 muscarinic receptors attenuates murine colon epithelial cell proliferation and neoplasia. Cancer Res 68:3573–3578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raufman JP, Shant J, Xie G, Cheng K, Gao XM, Shiu B, Shah N, Drachenberg CB, Heath J, Wess J, Khurana S (2011) Muscarinic receptor subtype-3 gene ablation and scopolamine butylbromide treatment attenuate small intestinal neoplasia in Apcmin/+ mice. Carcinogenesis 32:1396–1402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Regard JB, Sato IT, Coughlin SR (2008) Anatomical profiling of G protein-coupled receptor expression. Cell 135:561–571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reinhart PH, Taylor WM, Bygrave FL (1984) The role of calcium ions in the mechanism of action of alpha-adrenergic agonists in rat liver. Biochem J 223:1–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Serradeil-Le Gal C, Wagnon J, Simiand J, Griebel G, Lacour C, Guillon G, Barberis C, Brossard G, Soubrié P, Nisato D, Pascal M, Pruss R, Scatton B, Maffrand JP, Le Fur G (2002) Characterization of (2S,4R)-1-[5-chloro-1-[(2,4-dimethoxyphenyl)sulfonyl]-3-(2-methoxy-phenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-hydroxy-N, N-dimethyl-2-pyrrolidine carboxamide (SSR149415), a selective and orally active vasopressin V1b receptor antagonist. J Pharmacol Exp Ther 300:1122–1130

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Oury F, Yadav VK, Wess J, Liu XS, Guo XE, Murshed M, Karsenty G (2010) Signaling through the M3 muscarinic receptor favors bone mass accrual by decreasing sympathetic activity. Cell Metab 11:231–238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shukla AK, Xiao K, Lefkowitz RJ (2011) Emerging paradigms of β-arrestin-dependent seven transmembrane receptor signaling. Trends Biochem Sci 36:457–469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7:85–96

    Article  CAS  PubMed  Google Scholar 

  • Taylor SI (1999) Deconstructing type 2 diabetes. Cell 97:9–12

    Article  CAS  PubMed  Google Scholar 

  • Turner SM, Linfoot PA, Neese RA, Hellerstein MK (2005) Sources of plasma glucose and liver glycogen in fasted ob/ob mice. Acta Diabetol 42:187–193

    Article  CAS  PubMed  Google Scholar 

  • Udelhoven M, Leeser U, Freude S, Hettich MM, Laudes M, Schnitker J, Krone W, Schubert M (2010) Identification of a region in the human IRS2 promoter essential for stress induced transcription depending on SP1, NFI binding and ERK activation in HepG2 cells. J Mol Endocrinol 44:99–113

    Article  CAS  PubMed  Google Scholar 

  • Unger RH, Cherrington AD (2012) Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover. J Clin Invest 122:4–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wess J (1996) Molecular biology of muscarinic acetylcholine receptors. Crit Rev Neurobiol 10:69–99

    Article  CAS  PubMed  Google Scholar 

  • Wess J, Eglen RM, Gautam D (2007) Analysis of muscarinic receptor mutant mice: implications for drug development. Nat Rev Drug Discov 6:721–733

    Article  CAS  PubMed  Google Scholar 

  • Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM, Previs S, Zhang Y, Bernal D, Pons S, Shulman GI, Bonner-Weir S, White MF (1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391:900–904

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Miyakawa M, Duttaroy A, Yamanaka A, Moriguchi T, Makita R, Ogawa M, Chou CJ, Xia B, Crawley JN, Felder CC, Deng C, Wess J (2001) Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature 410:207–212

    Article  CAS  PubMed  Google Scholar 

  • Zangen DH, Bonner-Weir S, Lee CH, Latimer JB, Miller CP, Habener JF, Weir GC (1997) Reduced insulin, GLUT2, and IDX-1 in beta-cells after partial pancreatectomy. Diabetes 46:258–264

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The structural studies summarized in this review were supported by US National Science Foundation (NSF) grant CHE-1223785 and a gift from the Mathers Charitable Foundation (to B.K.K.). A.C.K. was funded by a National Science Foundation Graduate Research Fellowship. The work of J.L., J.H., and J.W. was supported by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH. We thank all of our coworkers and collaborators for their invaluable contributions to the work summarized in this minireview.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Wess.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruse, A.C., Li, J., Hu, J. et al. Novel Insights into M3 Muscarinic Acetylcholine Receptor Physiology and Structure. J Mol Neurosci 53, 316–323 (2014). https://doi.org/10.1007/s12031-013-0127-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0127-0

Keywords

Navigation