Skip to main content
Log in

Foxj2 Expression in Rat Spinal Cord After Injury and Its Role in Inflammation

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Foxj2 (forkhead box J2), a novel member of the forkhead/HNF3 family, binds DNA with a dual sequence specificity. It may play a role in maintenance and survival of developing and adult neurons. However, its expression and function in the central nervous system lesion are still unclear. In this study, we performed a spinal cord injury (SCI) model in adult Sprague–Dawley rats and investigated the dynamic changes of Foxj2 expression in the spinal cord. Western blot analysis revealed that Foxj2 was present in normal spinal cord. It gradually increased, reached a peak at day 5 after SCI, and then declined during the following days. Double immunofluorescence staining revealed wide expression of Foxj2, which is detected in neurons and astrocytes. After injury, Foxj2 expression was increased predominantly in astrocytes, which highly expressed proliferating cell nuclear antigen, a marker for proliferating cells. And knockdown of Foxj2 in cultured primary astrocytes by siRNA showed that Foxj2 played an important role in lipopolysaccharide-induced inflammatory responses. These results suggested that Foxj2 may be involved in the pathophysiology of SCI, and further research is needed to have a good understanding of its function and mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amat JA, Ishiguro H, Nakamura K, Norton WT (1996) Phenotypic diversity and kinetics of proliferating microglia and astrocytes following cortical stab wounds. Glia 16:368–382

    Article  PubMed  CAS  Google Scholar 

  • Beattie MS (2004) Inflammation and apoptosis: linked therapeutic targets in spinal cord injury. Trends Mol Med 10:580–583

    Article  PubMed  CAS  Google Scholar 

  • Benveniste EN (1997) Cytokines: influence on glial cell gene expression and function. Chem Immunol 69:31–75

    Article  PubMed  CAS  Google Scholar 

  • Benveniste EN (1998) Cytokine actions in the central nervous system. Cytokine Growth Factor Rev 9:259–275

    Article  PubMed  CAS  Google Scholar 

  • Carlsson P, Mahlapuu M (2002) Forkhead transcription factors: key players in development and metabolism. Dev Biol 250:1–23

    Article  PubMed  CAS  Google Scholar 

  • Codeluppi S, Svensson CI, Hefferan MP et al (2009) The Rheb-mTOR pathway is upregulated in reactive astrocytes of the injured spinal cord. J Neurosci 29:1093–1104

    Article  PubMed  CAS  Google Scholar 

  • Fan W, Morinaga H, Kim JJ et al (2010) FoxO1 regulates Tlr4 inflammatory pathway signalling in macrophages. EMBO J 29:4223–4236

    Article  PubMed  CAS  Google Scholar 

  • Filosa S, Rivera-Perez JA, Gomez AP et al (1997) Goosecoid and HNF-3beta genetically interact to regulate neural tube patterning during mouse embryogenesis. Development 124:2843–2854

    PubMed  CAS  Google Scholar 

  • Ghashghaei HT, Weimer JM, Schmid RS et al (2007) Reinduction of ErbB2 in astrocytes promotes radial glial progenitor identity in adult cerebral cortex. Genes Dev 21:3258–3271

    Article  PubMed  CAS  Google Scholar 

  • Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

    Article  PubMed  CAS  Google Scholar 

  • Granadino B, Arias-de-la-Fuente C, Perez-Sanchez C et al (2000) Fhx (Foxj2) expression is activated during spermatogenesis and very early in embryonic development. Mech Dev 97:157–160

    Article  PubMed  CAS  Google Scholar 

  • Gruner JA (1992) A monitored contusion model of spinal cord injury in the rat. J Neurotrauma 9:123–128

    Article  PubMed  CAS  Google Scholar 

  • Hannenhalli S, Kaestner KH (2009) The evolution of Fox genes and their role in development and disease. Nat Rev Genet 10:233–240

    Article  PubMed  CAS  Google Scholar 

  • Hausmann ON (2003) Post-traumatic inflammation following spinal cord injury. Spinal Cord 41:369–378

    Article  PubMed  CAS  Google Scholar 

  • Herrera E, Marcus R, Li S et al (2004) Foxd1 is required for proper formation of the optic chiasm. Development 131:5727–5739

    Article  PubMed  CAS  Google Scholar 

  • Hong HK, Noveroske JK, Headon DJ et al (2001) The winged helix/forkhead transcription factor Foxq1 regulates differentiation of hair in satin mice. Genesis 29:163–171

    Article  PubMed  CAS  Google Scholar 

  • Kalin TV, Meliton L, Meliton AY, Zhu X, Whitsett JA, Kalinichenko VV (2008) Pulmonary mastocytosis and enhanced lung inflammation in mice heterozygous null for the Foxf1 gene. Am J Respir Cell Mol Biol 39:390–399

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann E, Knochel W (1996) Five years on the wings of fork head. Mech Dev 57:3–20

    Article  PubMed  CAS  Google Scholar 

  • Labosky PA, Winnier GE, Jetton TL et al (1997) The winged helix gene, Mf3, is required for normal development of the diencephalon and midbrain, postnatal growth and the milk-ejection reflex. Development 124:1263–1274

    PubMed  CAS  Google Scholar 

  • Lal G, Yin N, Xu J et al (2011) Distinct inflammatory signals have physiologically divergent effects on epigenetic regulation of Foxp3 expression and Treg function. Am J Transplant 11:203–214

    Article  PubMed  CAS  Google Scholar 

  • Lee KS, Yang WI (1992) Comparison of brain tumor growth kinetics by proliferating cell nuclear antigen (PCNA) and bromodeoxyuridine (BrdU) labeling. Yonsei Med J 33:265–271

    PubMed  CAS  Google Scholar 

  • Lin L, Peng SL (2006) Coordination of NF-kappaB and NFAT antagonism by the forkhead transcription factor Foxd1. J Immunol 176:4793–4803

    PubMed  CAS  Google Scholar 

  • Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319–1322

    Article  PubMed  CAS  Google Scholar 

  • Lin L, Spoor MS, Gerth AJ, Brody SL, Peng SL (2004) Modulation of Th1 activation and inflammation by the NF-kappaB repressor Foxj1. Science 303:1017–1020

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Rudin M, Kozlova EN (2000) Glial cell proliferation in the spinal cord after dorsal rhizotomy or sciatic nerve transection in the adult rat. Exp Brain Res 131:64–73

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Ashwell KW, Waite P (2000) Advances in secondary spinal cord injury: role of apoptosis. Spine 25:1859–1866

    Article  PubMed  CAS  Google Scholar 

  • Madson JG, Lynch DT, Tinkum KL, Putta SK, Hansen LA (2006) Erbb2 regulates inflammation and proliferation in the skin after ultraviolet irradiation. Am J Pathol 169:1402–1414

    Article  PubMed  CAS  Google Scholar 

  • McDonald JW, Sadowsky C (2002) Spinal-cord injury. Lancet 359:417–425

    Article  PubMed  Google Scholar 

  • Morris GF, Mathews MB (1989) Regulation of proliferating cell nuclear antigen during the cell cycle. J Biol Chem 264:13856–13864

    PubMed  CAS  Google Scholar 

  • Nicole O, Goldshmidt A, Hamill CE et al (2005) Activation of protease-activated receptor-1 triggers astrogliosis after brain injury. J Neurosci 25(17):4319–4329

    Article  PubMed  CAS  Google Scholar 

  • Park E, Velumian AA, Fehlings MG (2004) The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J Neurotrauma 21:754–774

    Article  PubMed  Google Scholar 

  • Perez-Sanchez C, Gomez-Ferreria MA, de La Fuente CA et al (2000) FHX, a novel fork head factor with a dual DNA binding specificity. J Biol Chem 275:12909–12916

    Article  PubMed  CAS  Google Scholar 

  • Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6:193–201

    Article  PubMed  Google Scholar 

  • Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    Article  PubMed  CAS  Google Scholar 

  • Rivieccio MA, John GR, Song X et al (2005) The cytokine IL-1β activates IFN response factor 3 in human fetal astrocytes in culture. J Immunol 174:3719–3726

    PubMed  CAS  Google Scholar 

  • Saijo K, Winner B, Carson CT et al (2009) A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137:47–59

    Article  PubMed  CAS  Google Scholar 

  • Sekhon LH, Fehlings MG (2001) Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine (Phila Pa 1976) 26:S2–S12

    Article  CAS  Google Scholar 

  • Shi C, Sakuma M, Mooroka T et al (2008) Down-regulation of the forkhead transcription factor Foxp1 is required for monocyte differentiation and macrophage function. Blood 112:4699–4711

    Article  PubMed  CAS  Google Scholar 

  • Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  Google Scholar 

  • Tawfik VL, Lacroix-Fralish ML, Bercury KK, Nutile-McMenemy N, Harris BT, Deleo JA (2006) Induction of astrocyte differentiation by propentofylline increases glutamate transporter expression in vitro: heterogeneity of the quiescent phenotype. Glia 54:193–203

    Article  PubMed  Google Scholar 

  • Vargha-Khadem F, Gadian DG, Copp A, Mishkin M (2005) FOXP2 and the neuroanatomy of speech and language. Nat Rev Neurosci 6:131–138

    Article  PubMed  CAS  Google Scholar 

  • Wijchers PJ, Hoekman MF, Burbach JP, Smidt MP (2006) Identification of forkhead transcription factors in cortical and dopaminergic areas of the adult murine brain. Brain Res 1068:23–33

    Article  PubMed  CAS  Google Scholar 

  • Wyndaele M, Wyndaele JJ (2006) Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord 44:523–529

    Article  PubMed  CAS  Google Scholar 

  • Yadav A, Collman RG (2009) CNS inflammation and macrophage/microglial biology associated with HIV-1 infection. J Neuroimmune Pharmacol 4:430–447

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Key Medical Personnel Foundation of Jiangsu Province (RC2007027) and Health Project of Jiangsu Province (H200632).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Cui.

Additional information

Xiang Chen and Xingjian Cao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Cao, X., Tao, G. et al. Foxj2 Expression in Rat Spinal Cord After Injury and Its Role in Inflammation. J Mol Neurosci 47, 158–165 (2012). https://doi.org/10.1007/s12031-011-9704-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-011-9704-2

Keywords

Navigation