Skip to main content

Advertisement

Log in

A Lipoxin A4 Analog Ameliorates Blood–Brain Barrier Dysfunction and Reduces MMP-9 Expression in a Rat Model of Focal Cerebral Ischemia–Reperfusion Injury

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

LXA4 methyl ester (LXA4ME), a lipoxin A4 analog, reduces ischemic insult in the rat models of transient or permanent cerebral ischemic injury. We investigated whether LXA4ME could ameliorate blood–brain barrier (BBB) dysfunction after stroke by reducing matrix metalloproteinase (MMP)-9 expression. Adult male rats were subjected to 2-h middle cerebral artery occlusion (MCAO) followed by 24-h reperfusion. Brain infarctions were detected by triphenyltetrazolium chloride (TTC) staining. BBB dysfunction was determined by examining brain edema and Evans Blue extravasation. Temporal expression of MMP-9 was determined by zymography and Western blot. The presence of tissue inhibitors of metalloproteinase-1 (TIMP-1) was also determined by Western blot in tissue protein sample. Brain edema and Evans Blue leakage were significantly reduced after stroke in the LXA4ME group and were associated with reduced brain infarct volumes. MMP-9 activity and expression were inhibited by LXA4ME after stroke. In addition, LXA4ME significantly increased TIMP-1 protein levels. Our results indicate that LXA4ME reduces brain injury by improving BBB function in a rat model of MCAO, and that a relationship exists between BBB permeability and MMP-9 expression following ischemic insult. Furthermore, these results suggest that LXA4ME-mediated reduction of MMP-9 following stroke are attributed to increased TIMP-1 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asahi M, Asahi K, Jung JC, del Zoppo GJ, Fini ME, Lo EH (2000) Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab 20(12):1681–1689

    Article  PubMed  CAS  Google Scholar 

  • Asahi M, Wang X, Mori T et al (2001) Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood–brain barrier and white matter components after cerebral ischemia. J Neurosci 21(19):7724–7732

    PubMed  CAS  Google Scholar 

  • Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477(1–2):267–283

    Article  PubMed  CAS  Google Scholar 

  • Cezar-de-Mello PF, Vieira AM, Nascimento-Silva V, Villela CG, Barja-Fidalgo C, Fierro IM (2008) ATL-1, an analogue of aspirin-triggered lipoxin A4, is a potent inhibitor of several steps in angiogenesis induced by vascular endothelial growth factor. Br J Pharmacol 153(5):956–965

    Article  PubMed  CAS  Google Scholar 

  • Chen QH, Zhou WD, Pu DM, Huang QS, Li T, Chen QX (2010) 15-Epi-lipoxin A(4) inhibits the progression of endometriosis in a murine model. Fertil Steril 93(5):1440–1447

    Article  PubMed  CAS  Google Scholar 

  • Chiang N, Fierro IM, Gronert K, Serhan CN (2000) Activation of lipoxin A(4) receptors by aspirin-triggered lipoxins and select peptides evokes ligand-specific responses in inflammation. J Exp Med 191(7):1197–1208

    Article  PubMed  CAS  Google Scholar 

  • Chiang N, Arita M, Serhan CN (2005) Anti-inflammatory circultry: lipoxin, aspirin-triggered lipoxins and their receptor ALX. Prostaglandins Leukot Essent Fat Acids 73(3–4):163–177

    Article  CAS  Google Scholar 

  • Clark AW, Krekoski CA, Bou SS, Chapman KR, Edwards DR (1997) Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia. Neurosci Lett 238(1–2):53–56

    Article  PubMed  CAS  Google Scholar 

  • Crocker SJ, Pagenstecher A, Campbell IL (2004) The TIMPs tango with MMPs and more in the central nervous system. J Neurosci Res 75(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Cunningham LA, Wetzel M, Rosenberg GA (2005) Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia 50(4):329–339

    Article  PubMed  Google Scholar 

  • Fujimura M, Gasche Y, Morita-Fujimura Y, Massengale J, Kawase M, Chan PH (1999) Early appearance of activated matrix metalloproteinase-9 and blood–brain barrier disruption in mice after focal cerebral ischemia and reperfusion. Brain Res 842(1):92–100

    Article  PubMed  CAS  Google Scholar 

  • Gasche Y, Fujimura M, Morita-Fujimura Y et al (1999) Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice: a possible role in blood–brain barrier dysfunction. J Cereb Blood Flow Metab 19(9):1020–1028

    Article  PubMed  CAS  Google Scholar 

  • Gu Z, Kaul M, Yan B et al (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297(5584):1186–1190

    Article  PubMed  CAS  Google Scholar 

  • Heo JH, Lucero J, Abumiya T, Koziol JA, Copeland BR, del Zoppo GJ (1999) Matrix metalloproteinases increase very early during experimental focal cerebral ischemia. J Cereb Blood Flow Metab 19(6):624–633

    Article  PubMed  CAS  Google Scholar 

  • Hornebeck W, Lambert E, Petitfrère E, Bernard P (2005) Beneficial and detrimental influences of tissue inhibitor of metalloproteinase-1 (TIMP-1) in tumor progression. Biochimie 87(3–4):377–383

    Article  PubMed  CAS  Google Scholar 

  • Horstmann S, Kalb P, Koziol J, Gardner H, Wagner S (2003) Profiles of matrix metalloproteinases, their inhibitors, and laminin in stroke patients: influence of different therapies. Stroke 34(9):2165–2170

    Article  PubMed  Google Scholar 

  • Kauppinen TM, Swanson RA (2005) Poly(ADP-ribose) polymerase-1 promotes microglial activation, proliferation, and matrix metalloproteinase-9-mediated neuron death. J Immunol 174(4):2288–2296

    PubMed  CAS  Google Scholar 

  • Kim CH, Moon SK (2005) Epigallocatechin-3-gallate causes the p21/WAF1-mediated G(1)-phase arrest of cell cycle and inhibits matrix metalloproteinase-9 expression in TNF-alphainduced vascular smooth muscle cells. Arch Biochem Biophys 435(2):264–272

    Article  PubMed  CAS  Google Scholar 

  • Koh SH, Chang DI, Kim HT et al (2005) Effect of 3-aminobenzamide, PARP inhibitor, on matrix metalloproteinase-9 level in plasma and brain of ischemic stroke model. Toxicology 214(1–2):131–139

    Article  PubMed  CAS  Google Scholar 

  • Lee SR, Tsuji K, Lee SR, Lo EH (2004) Role of matrix metalloproteinases in delayed neuronal damage after transient global cerebral ischemia. J Neurosci 24(3):671–678

    Article  PubMed  CAS  Google Scholar 

  • Lee KJ, Jang YH, Lee H, Yoo HS, Lee SR (2008) PPARgamma agonist pioglitazone reduces [corrected] neuronal cell damage after transient global cerebral ischemia through matrix metalloproteinase inhibition. Eur J Neurosci 27(2):334–342

    Article  PubMed  Google Scholar 

  • Lo EH (2008) Experimental models, neurovascular mechanisms and translational issues in stroke research. Br J Pharmacol 153(Suppl 1):S396–S405

    PubMed  CAS  Google Scholar 

  • Lo EH, Wang X, Cuzner ML (2002) Extracellular proteolysis in brain injury and inflammation: role for plasminogen activators and matrix metalloproteinases. J Neurosci Res 69(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Longa EZ, Weinstein PR, Carlson S, Cummins R. (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20(1):84–91

    Article  PubMed  CAS  Google Scholar 

  • Lu A, Clark JF, Broderick JP et al (2008) Reperfusion activates metalloproteinases that contribute to neurovascular injury. Exp Neurol 210(2):549–559

    Article  PubMed  CAS  Google Scholar 

  • Maddox JF, Hachicha M, Takano T, Petasis NA, Fokin VV, Serhan CN (1997) Lipoxin A4 stable analoges are potent mimetics that stimulate human monocytes and THP-1 cell via a G-protein linked lipoxin A4 receptor. J Biol Chem 272(11):6972–6978

    Article  PubMed  CAS  Google Scholar 

  • Petasis NA, Keledjian R, Sun YP et al (2008) Design and synthesis of benzo-lipoxin A4 analogs with enhanced stability and potent anti-inflammatory properties. Bioorg Med Chem Lett 18(4):1382–1387

    Article  PubMed  CAS  Google Scholar 

  • Pfefferkorn T, Rosenberg GA (2003) Closure of the blood–brain barrier by matrix metalloproteinase inhibition reduces rtPA-mediated mortality in cerebral ischemia with delayed reperfusion. Stroke 34(8):2025–2030

    Article  PubMed  Google Scholar 

  • Planas AM, Solé S, Justicia C, Farré ER (2000) Estimation of gelatinase content in rat brain: effect of focal ischemia. Biochem Biophys Res Commun 278(3):803–807

    Article  PubMed  CAS  Google Scholar 

  • Planas AM, Solé S, Justicia C (2001) Expression and activation of matrix metalloproteinase-2 and -9 in rat brain after transient focal cerebral ischemia. Neurobiol Dis 8(5):834–846

    Article  PubMed  CAS  Google Scholar 

  • Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC (1998) Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke 29(5):1020–1030

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg GA, Estrada EY, Dencoff JE (1998) Matrix metalloproteinases and TIMPs are associated with blood–brain barrier opening after reperfusion in rat brain. Stroke 29(10):2189–2195

    Article  PubMed  CAS  Google Scholar 

  • Serhan CN, Oliw E (2001) Unorthodox routes to prostanoid formation: new twists in cyclooxygenase-initiated pathways. J Clin Invest 107(12):1481–1489

    Article  PubMed  CAS  Google Scholar 

  • Serhan CN, Maddox JF, Petasis NA et al (1995) Design of lipoxin A4 stable analogs that block transmigration and adhesion of human neutrophils. Biochemistry 34(44):14609–14615

    Article  PubMed  CAS  Google Scholar 

  • Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8(5):349–361

    Article  PubMed  CAS  Google Scholar 

  • Sodin-Semrl S, Taddeo B, Tseng D, Varga J, Fiore S (2000) Lipoxin A4 inhibits IL-1 beta-induced IL-6, IL-8, and matrix metalloproteinase-3 production in human synovial fibroblasts and enhances synthesis of tissue inhibitors of metalloproteinases. J Immunol 164(5):2660–2666

    PubMed  CAS  Google Scholar 

  • Sodin-Semrl S, Spagnolo A, Mikus R, Barbaro B, Varga J, Fiore S (2004) Opposing regulation of interleukin-8 and NF-kappaB responses by lipoxin A4 and serum amyloid A via the common lipoxin A receptor. Int J Immunopathol Pharmacol 17(2):145–156

    PubMed  CAS  Google Scholar 

  • Svensson CI, Zattoni M, Serhan CN (2007) Lipoxins and aspirin-triggered lipoxin inhibit inflammatory pain processing. J Exp Med 204(2):245–252

    Article  PubMed  CAS  Google Scholar 

  • Wada K, Arita M, Nakajima A et al (2006) Leukotriene B4 and lipoxin A4 are regulatory signals for neural stem cell proliferation and differentiation. FASEB J 20(11):1785–1792

    Article  PubMed  CAS  Google Scholar 

  • Wagner S, Nagel S, Kluge B et al (2003) Topographically graded postischemic presence of metalloproteinases is inhibited by hypothermia. Brain Res 984(1–2):63–75

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Barone FC, White RF, Feuerstein GZ (1998) Subtractive cloning identifies tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) increased gene expression following focal stroke. Stroke 29(2):516–520

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Jung J, Asahi M et al (2000) Effects of matrix metalloproteinase-9 gene knock-out on morphological and motor outcomes after traumatic brain injury. J Neurosci 20(18):7037–7042

    PubMed  CAS  Google Scholar 

  • Wu CY, Hsieh HL, Jou MJ, Yang CM (2004) Involvement of p42/p44 MAPK, p38 MAPK, JNK and nuclear factor-kappa B in interleukin-1beta-induced matrix metalloproteinase-9 expression in rat brain astrocytes. J Neurochem 90(6):1477–1488

    Article  PubMed  CAS  Google Scholar 

  • Wu SH, Liao PY, Dong L, Chen ZQ (2008) Signal pathway involved in inhibition by lipoxin A(4) of production of interleukins induced in endothelial cells by lipopolysaccharide. Inflamm Res 57(9):430–437

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Ye XH, Guo PP et al (2010) Neuroprotective Effect of lipoxin A(4) methyl ester in a rat model of permanent focal cerebral ischemia. J Mol Neurosci 42(2):226–234

    Article  PubMed  CAS  Google Scholar 

  • Ye XH, Wu Y, Guo PP et al (2010) Lipoxin A(4) analogue protects brain and reduces inflammation in a rat model of focal cerebral ischemia reperfusion. Brain Res 1323:174–183

    Article  PubMed  CAS  Google Scholar 

  • Yiqin Y, Meilin X, Jie X, Keping Z (2009) Aspirin inhibits MMP-2 and MMP-9 expression and activity through PPARalpha/gamma and TIMP-1-mediated mechanisms in cultured mouse celiac macrophages. Inflammation 32(4):233–241

    Article  PubMed  Google Scholar 

  • Zhou XY, Li YS, Wu P et al (2009) Lipoxin A(4) inhibited hepatocyte growth factor-induced invasion of human hepatoma cells. Hepatol Res 39(9):921–930

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Natural Science Foundation of China (No. 30700784).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You Shang.

Additional information

Yan Wu and Yan-Ping Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Wang, YP., Guo, P. et al. A Lipoxin A4 Analog Ameliorates Blood–Brain Barrier Dysfunction and Reduces MMP-9 Expression in a Rat Model of Focal Cerebral Ischemia–Reperfusion Injury. J Mol Neurosci 46, 483–491 (2012). https://doi.org/10.1007/s12031-011-9620-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-011-9620-5

Keywords

Navigation