The Correlation Between Helicobacter pylori Infection and Lnc-OC1 Expression in Gastric Cancer Tissues in an Iranian Population

Abstract

Purpose

The role of Lnc_OC1 in gastric cancer (GC) has not been well documented. The very purpose of the present study was to determine not only the expression of Lnc_OC1 in gastric tissues but also its role in the formation of GC. Furthermore, the expression levels of Lnc-OC1 were examined in H. pylori-positive versus H. pylori-negative GC tissues.

Methods

Tumor and adjacent normal tissues were collected from 43 patients with GC. RNA extraction and cDNA synthesis were performed. Then, qRT-PCR was carried out. Finally, an independent sample t test was run to examine the expression level of Lnc_OC1 in a GC and normal tissues using SPSS program.

Results

The results revealed a significantly higher expression level of Lnc_OC1 in the GC tissues as compared with the normal tissues (p = 0.0037). The correlations between the expression level of Lnc_OC1 and the clinical features of patients were not statistically significant (p > 0.05). Moreover, the expression of Lnc-OC1 was significantly higher in H. pylori-positive patients as compared with H. pylori-negative patients (p = 0.01).

Conclusion

The findings of the present study revealed that deregulation of Lnc_OC1 may have a role in the H. pylori-associated pathogenesis of GC. Moreover, a direct association can be speculated between GC formation and Lnc_OC1 expression. The mentioned findings highlight the potential role of Lnc_OC1 as a prognostic biomarker of GC. Hence, further evaluations are required in this respect.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Sitarz R, Skierucha M, Mielko J, Offerhaus J, Maciejewski R, Polkowski W. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res. 2018;10:239–48.

    CAS  Article  Google Scholar 

  2. 2.

    Rawla P, Barsouk A. Epidemiology of gastric cancer: global trends, risk factors and prevention. Prz Gastroenterol. 2019;14(1):26–38.

    CAS  PubMed  Google Scholar 

  3. 3.

    Cheng XJ, Lin JC, Tu SP. Etiology and prevention of gastric cancer. Gastrointest Tumors. 2016;3(1):25–36.

    CAS  Article  Google Scholar 

  4. 4.

    Forman D, Burley VJ. Gastric cancer: global pattern of the disease and an overview of environmental risk factors. Best Pract Res Clin Gastroenterol. 2006;20(4):633–49.

    CAS  Article  Google Scholar 

  5. 5.

    Dastmalchi, N., R. Safaralizadeh, and S.M. Banan Khojasteh, The correlation between microRNAs and Helicobacter pylori in gastric cancer. Pathog Dis, 2019. 77(4).

  6. 6.

    He RZ, Luo DX, Mo YY. Emerging roles of lncRNAs in the post-transcriptional regulation in cancer. Genes Dis. 2019;6(1):6–15.

    CAS  Article  Google Scholar 

  7. 7.

    Brosnan CA, Voinnet O. The long and the short of noncoding RNAs. Curr Opin Cell Biol. 2009;21(3):416–25.

    CAS  Article  Google Scholar 

  8. 8.

    Chen LL, Carmichael GG. Decoding the function of nuclear long non-coding RNAs. Curr Opin Cell Biol. 2010;22(3):357–64.

    CAS  Article  Google Scholar 

  9. 9.

    Hombach S, Kretz M. Non-coding RNAs: classification, biology and functioning. Adv Exp Med Biol. 2016;937:3–17.

    CAS  Article  Google Scholar 

  10. 10.

    Fernandes, J.C.R., et al., Long non-coding RNAs in the regulation of gene expression: physiology and disease. Noncoding RNA, 2019. 5(1).

  11. 11.

    Fu X, Tian Y, Kuang W, Wen S, Guo W. Long non-coding RNA DLX6-AS1 silencing inhibits malignant phenotypes of gastric cancer cells. Exp Ther Med. 2019;17(6):4715–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Sun, Q., et al., LncRNA LOXL1-AS1 facilitates the tumorigenesis and stemness of gastric carcinoma via regulation of miR-708-5p/USF1 pathway. Cell Prolif, 2019: p. e12687.

  13. 13.

    Liang Y, et al. DLX6-AS1/miR-204-5p/OCT1 positive feedback loop promotes tumor progression and epithelial-mesenchymal transition in gastric cancer. Gastric Cancer. 2019.

  14. 14.

    Tian X, Gao S, Liu Y, Xuan Y, Wu R, Zhang Z. Long non-coding RNA ENST00000500843 is downregulated and promotes chemoresistance to paclitaxel in lung adenocarcinoma. Oncol Lett. 2019;18(4):3716–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Bao Y, Tang J, Qian Y, Sun T, Chen H, Chen Z, et al. Long noncoding RNA BFAL1 mediates enterotoxigenic Bacteroides fragilis-related carcinogenesis in colorectal cancer via the RHEB/mTOR pathway. Cell Death Dis. 2019;10(9):675.

    Article  Google Scholar 

  16. 16.

    Zhang C, Liu J, Zhang Y, Luo C, Zhu T, Zhang R, et al. LINC01210 accelerates proliferation, invasion and migration in ovarian cancer through epigenetically downregulating KLF4. Biomed Pharmacother. 2019;119:109431.

    CAS  Article  Google Scholar 

  17. 17.

    Niland CN, Merry CR, Khalil AM. Emerging roles for long non-coding RNAs in cancer and neurological disorders. Front Genet. 2012;3:25.

    CAS  Article  Google Scholar 

  18. 18.

    Matsuoka T, Yashiro M. Biomarkers of gastric cancer: current topics and future perspective. World J Gastroenterol. 2018;24(26):2818–32.

    Article  Google Scholar 

  19. 19.

    Bolha L, Ravnik-Glavac M, Glavac D. Long noncoding RNAs as biomarkers in cancer. Dis Markers. 2017;2017:7243968.

    Article  Google Scholar 

  20. 20.

    Shi XY, et al. LncRNA CADM1-AS1 serves as a new prognostic biomarker for gastric cancer. Eur Rev Med Pharmacol Sci. 2019;23(3 Suppl):232–8.

    PubMed  Google Scholar 

  21. 21.

    Yang, J. and H. Song, Identification of long noncoding RNA RP11-169F17.1 and RP11-669N7.2 as novel prognostic biomarkers of stomach adenocarcinoma based on integrated bioinformatics analysis. Epigenomics, 2019.

  22. 22.

    Yang L, Long Y, Li C, Cao L, Gan H, Huang K, et al. Genome-wide analysis of long noncoding RNA profile in human gastric epithelial cell response to Helicobacter pylori. Jpn J Infect Dis. 2015;68(1):63–6.

    CAS  Article  Google Scholar 

  23. 23.

    Tao F, Tian X, Lu M, Zhang Z. A novel lncRNA, Lnc-OC1, promotes ovarian cancer cell proliferation and migration by sponging miR-34a and miR-34c. J Genet Genomics. 2018;45(3):137–45.

    Article  Google Scholar 

  24. 24.

    Kazemzadeh M, Safaralizadeh R, feizi MAHP, Somi MH, Shokoohi B. Misregulation of the dependence receptor DCC and its upstream lincRNA, LOC100287225, in colorectal cancer. Tumori. 2017;103(1):40–3.

    CAS  Article  Google Scholar 

  25. 25.

    Tam C, Wong JH, Tsui SKW, Zuo T, Chan TF, Ng TB. LncRNAs with miRNAs in regulation of gastric, liver, and colorectal cancers: updates in recent years. Appl Microbiol Biotechnol. 2019;103(12):4649–77.

    CAS  Article  Google Scholar 

  26. 26.

    Liu W, Xu J, Zhang C. Clinical usefulness of gastric adenocarcinoma predictive long intergenic noncoding RNA in human malignancies: a meta-analysis. Pathol Res Pract. 2019;215(6):152387.

    CAS  Article  Google Scholar 

  27. 27.

    Yang S, Sun Z, Zhou Q, Wang W, Wang G, Song J, et al. MicroRNAs, long noncoding RNAs, and circular RNAs: potential tumor biomarkers and targets for colorectal cancer. Cancer Manag Res. 2018;10:2249–57.

    CAS  Article  Google Scholar 

  28. 28.

    Liz J, Esteller M. lncRNAs and microRNAs with a role in cancer development. Biochim Biophys Acta. 2016;1859(1):169–76.

    CAS  Article  Google Scholar 

  29. 29.

    Slabakova E, et al. Alternative mechanisms of miR-34a regulation in cancer. Cell Death Dis. 2017;8(10):e3100.

    CAS  Article  Google Scholar 

  30. 30.

    Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ. 2010;17(2):193–9.

    CAS  Article  Google Scholar 

  31. 31.

    Rupaimoole R, Slack FJ. A role for miR-34 in colon cancer stem cell homeostasis. Stem Cell Investig. 2016;3:42.

    Article  Google Scholar 

  32. 32.

    Cheng CY, Hwang CI, Corney DC, Flesken-Nikitin A, Jiang L, Öner GM, et al. miR-34 cooperates with p53 in suppression of prostate cancer by joint regulation of stem cell compartment. Cell Rep. 2014;6(6):1000–7.

    CAS  Article  Google Scholar 

  33. 33.

    Jin K, Xiang Y, Tang J, Wu G, Li J, Xiao H, et al. miR-34 is associated with poor prognosis of patients with gallbladder cancer through regulating telomere length in tumor stem cells. Tumour Biol. 2014;35(2):1503–10.

    CAS  Article  Google Scholar 

  34. 34.

    Yang T, Zeng H, Chen W, Zheng R, Zhang Y, Li Z, et al. Helicobacter pylori infection, H19 and LINC00152 expression in serum and risk of gastric cancer in a Chinese population. Cancer Epidemiol. 2016;44:147–53.

    CAS  Article  Google Scholar 

  35. 35.

    Zhou X, Chen H, Zhu L, Hao B, Zhang W, Hua J, et al. Helicobacter pylori infection related long noncoding RNA (lncRNA) AF147447 inhibits gastric cancer proliferation and invasion by targeting MUC2 and up-regulating miR-34c. Oncotarget. 2016;7(50):82770–82.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their deepest thanks to the staff of Imam Reza Hospital and Immunology Research Center of Tabriz University of Medical Sciences, Tabriz, Iran.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Reza Safaralizadeh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh, A., Baradaran, B., Dastmalchi, N. et al. The Correlation Between Helicobacter pylori Infection and Lnc-OC1 Expression in Gastric Cancer Tissues in an Iranian Population. J Gastrointest Canc (2020). https://doi.org/10.1007/s12029-020-00438-4

Download citation

Keywords

  • Gastric cancer
  • Lnc_OC1
  • Helicobacter pylori