Prognostic Significance of VEGF and HIF-1 α in Hepatocellular Carcinoma Patients Receiving Sorafenib Versus Metformin Sorafenib Combination



Hepatocellular carcinoma (HCC) is a major health problem. HCC burden has been increasing in Egypt in the past 10 years. Most HCC cases are diagnosed at an advanced stage with limited treatment options. Sorafenib is the standard therapy for advanced HCC, but the effectiveness is not satisfied. Metformin may decrease the risk of HCC development in diabetic patients, reduces tumor invasion, and augments sensitivity to sorafenib; however, safety and efficacy of combined treatment are still unclear. As HCC is characterized by high vascularity, and vascular endothelial growth factor (VEGF) plays an important role in vascularization, many studies questioned if VEGF and HIF-1 α could offer information about HCC response to sorafenib. We conducted this study to assess the benefits from adding metformin to HCC treatment, and appraise the role of VEGF and HIF-1 α in HCC prognosis.


This was a prospective, randomized study in which 80 advanced measurable patients consecutively treated with sorafenib plus metformin (arm A) or sorafenib alone (arm B), prognostic value of plasma, and tissue levels of VEGF and HIF-1 α were evaluated.


We enrolled 61 men and 19 women with a median age of 60 years (range 49–68 years). Fifty-seven patients had Child–Pugh A while 23 had early B, the most common etiology of liver disease was hepatitis C (86%). Sixty percent of patients were diabetic. No significant difference was detected between arm A and arm B regarding response to treatment (p = 0.5), time to disease progression (p = 0.3), or overall survival (p = 0.6). Low VEGF and HIF-1 α plasma levels were significantly associated with better treatment response (p < 0.001 for both), and higher OS (p < 0.001). Patients with high expressions of VEGF and HIF in HCC tissue had significantly poor treatment outcome (p < 0.001, p = 0.03, respectively), and poor OS (p < 0.001, p < 0.001, respectively).


No superior efficacy of adding metformin to sorafenib in HCC treatment. VEGF and HIF-1 α had promising prognostic value in HCC.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Hollebecque A, Malka D, Ferte C, et al. Systemic treatment of advanced hepatocellular carcinoma: from disillusions to new horizons. Eur J Cancer. 2015;51:327–39.

    PubMed  Google Scholar 

  2. 2.

    Balogh J, Victor D, Asham EH, Gordon S, Boktour M. Hepatocellular carcinoma: a review. J Hepatocell Carcinoma. 2016;2016(3):41–53.

    Google Scholar 

  3. 3.

    Ibrahim AS, Khaled HM, Mikhail NN, Baraka H, Kamel HA. Cancer incidence in Egypt: results of the National Population-Based Cancer Registry Program. J Cancer Epidemiol. 2014;2014:437971.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. SHARP Investigators Study Group (2008). Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    CAS  PubMed  Google Scholar 

  5. 5.

    Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10:25–34.

    CAS  PubMed  Google Scholar 

  6. 6.

    Crissien AM, Frenette C. Current management of hepatocellular carcinoma. Gastroenterol Hepatol (N Y). 2014;10(3):153–61.

    Google Scholar 

  7. 7.

    Chen HP, Shieh JJ, Chang CC, et al. Metformin decreases hepatocellular carcinoma risk in a dose-dependent manner: population-based and in vitro studies. Gut. 2013;62:606–15.

    CAS  PubMed  Google Scholar 

  8. 8.

    Bailey CJ, Turner RC. Metformin. N Engl J Med. 1996;334(9):574–9.

    CAS  PubMed  Google Scholar 

  9. 9.

    Ben Sahra I, Regazzetti C, Robert G, et al. Metformin, independent of AMPK, induces mTOR inhibition and cell - cycle arrest through REDD1. Cancer Res. 2011;71:4366e72.

    Google Scholar 

  10. 10.

    Singh S, Singh PP, Singh AG, et al. Antidiabetic medications and the risk of hepatocellular cancer: a systematic review and meta-analysis. Am J Gastroenterol. 2013;108:881–91 quiz 892.

    CAS  PubMed  Google Scholar 

  11. 11.

    Zhan P, Qian Q, Yu L-K. Serum VEGF level is associated with the outcome of patients with hepatocellular carcinoma: a meta-analysis. Hepatobiliary Surg Nutr. 2013;2(4):209–15.

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Zhao J, Hu J, Cai J, Yang X, Yang Z. Vascular endothelial growth factor expression in serum of patients with hepato-cellular carcinoma. Chin Med J. 2003;116:772–6.

    CAS  PubMed  Google Scholar 

  13. 13.

    Liu Y, Poon RT, Li Q, Kok TW, Lau C, Fan ST. Both anti-angiogenesis- and angiogenesis-independent effects are responsible for hepatocellular carcinoma growth arrest by tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res. 2005;65:3691–9.

    CAS  PubMed  Google Scholar 

  14. 14.

    Schoenleber SJ, Kurtz DM, Talwalkar JA, et al. Prognostic role of vascular endothelial growth factor in hepatocellular carcinoma: systematic review and meta-analysis. Br J Cancer. 2009;100:1385–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Myung SJ, Yoon J. Hypoxia in hepatocellular carcinoma. Korean J Hepatol. 2007;13(1):9–19.

    PubMed  Google Scholar 

  16. 16.

    Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12(12):5447–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Hong SS, Lee H, Kim KW. HIF-1alpha: a valid therapeutic target for tumor therapy. Cancer Res Treat. 2004;36(6):343–53.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Burroughs SK, Kaluz S, Wang D, Wang K, Van Meir EG, Wang B. Hypoxia inducible factor pathway inhibitors as anticancer therapeutics. Future Med Chem. 2013;5(5):553–72.

    CAS  PubMed  Google Scholar 

  19. 19.

    Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005;23(5):1011–27.

    CAS  PubMed  Google Scholar 

  20. 20.

    Welker MW, Trojan J. Antiangiogenic treatment in hepatocellular carcinoma: the balance of efficacy and safety. Cancer Manag Res. 2013;5:337–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Liu L, Ho RLK, Chen GG, Lai PBS. Sorafenib inhibits hypoxia-inducible factor-1alpha synthesis: implications for antiangiogenic activity in hepatocellular carcinoma. Clin Cancer Res. 2012;18(20):5662–71.

    CAS  PubMed  Google Scholar 

  22. 22.

    Wang W, Xu G, Jia WD, et al. Expression and correlation of hypoxia-inducible factor-1α, vascular endothelial growth factor and microvessel density in experimental rat hepatocarcinogenesis. J Int Med Res. 2009;37(2):417–25.

    CAS  PubMed  Google Scholar 

  23. 23.

    Li S, Yao D, Wang L, et al. Expression characteristics of hypoxia-inducible factor-1α and its clinical values in diagnosis and prognosis of hepatocellular carcinoma. Hepat Mon. 2011;11(10):821–8.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Zheng S, Chen X, Yin X, Zhang B. Prognostic significance of HIF-1a expression in hepatocellular carcinoma: a meta-analysis. PLoS One. 2013;8(6):e65753.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Cao S, Yang S, Wu C, et al. Protein expression of hypoxia-inducible factor-1 alpha and hepatocellular carcinoma: a systematic review with meta-analysis. Clin Res Hepatol Gastroenterol. 2014;S2210-7401(14):2014.

    Google Scholar 

  26. 26.

    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst. 2000;92:205–16.

    CAS  PubMed  Google Scholar 

  27. 27.

    Hsu SM, Raine L, Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques. J Histochem Cytochem. 1981;29:577.

    CAS  PubMed  Google Scholar 

  28. 28.

    Xiang ZL, Zeng ZC, Fan J, Tang ZY, He J, Zeng HY, et al. The expression of HIF-1alpha in primary hepatocellular carcinoma and its correlation with radiotherapy response and clinical outcome. Mol Biol Rep. 2012;39:2021–9.

    CAS  PubMed  Google Scholar 

  29. 29.

    Dai CX, Gao Q, Qiu SJ, et al. Hypoxia-inducible factor-1 alpha, in association with inflammation, angiogenesis and MYC, is a critical prognostic factor in patients with HCC after surgery. BMC Cancer. 2009;9:418.

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Xiang ZL, Zeng ZC, Fan J, Tang ZY, Zeng HY, Gao DM. Gene expression profiling of fixed tissues identified hypoxia-inducible factor-1alpha, VEGF, and matrix metalloproteinase-2 as biomarkers of lymph node metastasis in hepatocellular carcinoma. Clin Cancer Res. 2011;17:5463–72.

    CAS  PubMed  Google Scholar 

  31. 31.

    Xie H, Song J, Liu K, Ji H, Shen H, Hu S, et al. The expression of hypoxia-inducible factor-1alpha in hepatitis B virus-related hepatocellular carcinoma: correlation with patients’ prognosis and hepatitis B virus X protein. Dig Dis Sci. 2008;53:3225–33.

    CAS  PubMed  Google Scholar 

  32. 32.

    Staibano S, Mascolo M, Di Benedetto M, et al. BAG3 protein delocalisation in prostate carcinoma. Tumor Biol. 2010;31(5):461–9.

    CAS  Google Scholar 

  33. 33.

    Basa N, Cornianu M, Lazar E, Dema A, Taban S, Lazar D, et al. Immunohistochemical expression of VEGF in hepatocellular carcinoma and surrounding liver tissue. Seria Ştiinţele Vieţii. 2011;21:479–86.

    CAS  Google Scholar 

  34. 34.

    Guan Q, Junpeng G, Zhang H, Ren W. Correlation between vascular endothelial growth factor levels and prognosis of hepatocellular carcinoma patients receiving radiofrequency ablation. Biotechnol Biotechnol Equip. 2015;29(1):119–23.

    CAS  PubMed  Google Scholar 

  35. 35.

    Dabrowski M. Glycated hemoglobin, diabetes treatment and cancer risk in type 2 diabetes. A case-control study. Ann Agric Environ Med. 2013;20:116–21.

    CAS  PubMed  Google Scholar 

  36. 36.

    Li CI, Chen HJ, Lai HC, Liu CS, Lin WY, Li TC, et al. Hyperglycemia and chronic liver diseases on risk of hepatocellular carcinoma in Chinese patients with type 2 diabetes–National cohort of Taiwan Diabetes Study. Int J Cancer. 2015;136:2668–79.

    CAS  PubMed  Google Scholar 

  37. 37.

    Donadon V, Balbi M, Mas MD, Casarin P, Zanette G. Metformin and reduced risk of hepatocellular carcinoma in diabetic patients with chronic liver disease. Liver Int. 2010;30:750–8.

    CAS  PubMed  Google Scholar 

  38. 38.

    Sluik D, Boeing H, Montonen J, et al. HbA1c measured in stored erythrocytes is positively linearly associated with mortality in individuals with diabetes mellitus. PLoS One. 2012;7:e38877.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    de Beer JC, Liebenberg L. Does cancer risk increase with HbA1c, independent of diabetes? BJC. 2014;110:2361–8.

    PubMed  Google Scholar 

  40. 40.

    Yang X, Ko GT, So WY, et al. Associations of hyperglycemia and insulin usage with the risk of cancer in type 2 diabetes: the Hong Kong diabetes registry. Diabetes. 2010;59:1254–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Bhat M, Chaiteerakij R, Harmsen WS, Schleck CD, Yang JD, et al. Metformin does not improve survival in patients with hepatocellular carcinoma. World J Gastroenterol. 2014;20(42):15750–5 ISSN 1007–9327 (print) ISSN 2219–2840 (online).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Gardini C, Marisi G, Scarpi E, Scartozzi M. Metformin effects on clinical outcome in advanced HCC patients receiving sorafenib: validation study. Eur J Cancer. 2017;

  43. 43.

    Ma SJ, Zheng YX, Zhou PC, Xiao YN, Tan HZ. Metformin use improves survival of diabetic liver cancer patients: systematic review and meta-analysis. Oncotarget. 2016;7(40):66202–11.

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Liu L, Zhu XD, Wang WQ, Shen Y, Qin Y, Ren ZG, et al. Activation of beta-catenin by hypoxia in hepatocellular carcinoma contributes to enhanced metastatic potential and poor prognosis. Clin Cancer Res. 2010;16:2740–50.

    CAS  PubMed  Google Scholar 

  45. 45.

    Huang GW, Yang LY, Lu WQ. Expression of hypoxia-inducible factor 1alpha and vascular endothelial growth factor in hepatocellular carcinoma: impact on neovascularization and survival. World J Gastroenterol. 2005;11:1705–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Xia L, Mo P, Huang W, Zhang L, Wang Y, et al. The TNF-alpha/ROS/HIF-1-induced upregulation of FoxMI expression promotes HCC proliferation and resistance to apoptosis. Carcinogenesis. 2012;33:2250–9.

    CAS  PubMed  Google Scholar 

  47. 47.

    Wada H, Nagano H, Yamamoto H, Yang Y, Kondo M, et al. Expression pattern of angiogenic factors and prognosis after hepatic resection in hepatocellular carcinoma: importance of angiopoietin-2 and hypoxia-induced factor-1 alpha. Liver Int. 2006;26:414–23.

    CAS  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Rasha Haggag.

Ethics declarations

This study was approved by Zagazig University Institutional Review Board (IRB), and carried out from December 2014 to January 2016 at Zagazig University and El Mabara Hospitals.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El Shorbagy, S., abuTaleb, F., Labib, H.A. et al. Prognostic Significance of VEGF and HIF-1 α in Hepatocellular Carcinoma Patients Receiving Sorafenib Versus Metformin Sorafenib Combination. J Gastrointest Canc 52, 269–279 (2021).

Download citation


  • Hepatocellular carcinoma
  • VEGF
  • HIF-1 α
  • Sorafenib
  • Metformin