Association of Cerebral Oximetry with Outcomes after Extracorporeal Membrane Oxygenation

Abstract

Background

Extracorporeal membrane oxygenation (ECMO) is associated with neurologic morbidity and mortality. We investigated whether cerebral regional oxygen saturation (rSO2) is associated with neurologic outcomes and survival in children on ECMO.

Methods

This was a retrospective observational study of children aged 1 day to 20 years who underwent ECMO with routine cerebral rSO2 monitoring in the pediatric intensive care unit at a single academic center between February 2008 and September 2014. We collected all serial rSO2 values recorded in the electronic medical record during the ECMO course. Favorable outcome was defined as survival with Pediatric Cerebral Performance Category (PCPC) ≤ 2 at hospital discharge or no decline from baseline PCPC.

Results

We reviewed data from 153 patients who underwent 156 ECMO runs. The median age was 12.5 days (interquartile range [IQR], 2 days—15 months). Ninety-nine (64%) patients survived to hospital discharge, and 82/99 (83%) survivors had favorable neurologic outcome by discharge PCPC. Neuroimaging studies were obtained in 135 (87%) patients, 59 (44%) of which showed abnormal findings. Ninety-two (59%) patients had any rSO2 ≤ 50%, 60 (38%) had any rSO2 decline > 20% from baseline, and 26 (17%) had any rSO2 decline > 20% from the reading 1 h prior. Any rSO2 ≤ 50% and any rSO2 decline > 20% from baseline were each associated with unfavorable outcome at hospital discharge (multivariable-adjusted odds ratio [OR], 2.82 [95% CI 1.10–7.25] and 4.52 [95% CI 1.76–11.58], respectively). rSO2 decline > 20% from the reading 1 h prior was not significantly associated with the outcomes.

Conclusion

Among children in one institution who underwent routine clinical rSO2 monitoring during ECMO, rSO2 decline was associated with unfavorable short-term neurologic outcome and death after adjusting for potential confounders. The effectiveness of initiating early preventative measures in these high-risk patients needs further study.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Makdisi G, Wang IW. Extra corporeal membrane oxygenation (ECMO) review of a lifesaving technology. J Thorac Dis. 2015;7:E166–76.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Thiagarajan RR, Barbaro RP, Rycus PT, et al. Extracorporeal life support organization registry international report 2016. ASAIO J. 2017;63:60–7.

    Article  Google Scholar 

  3. 3.

    Barbaro RP, Paden ML, Guner YS, et al. Pediatric extracorporeal life support organization registry international report 2016. ASAIO J. 2017;63:456–63.

    Article  Google Scholar 

  4. 4.

    Polito A, Barrett CS, Wypij D, et al. Neurologic complications in neonates supported with extracorporeal membrane oxygenation. An analysis of ELSO registry data. Intensive Care Med. 2013;39:1594–601.

    CAS  Article  Google Scholar 

  5. 5.

    Thiagarajan RR, Laussen PC, Rycus PT, Bartlett RH, Bratton SL. Extracorporeal membrane oxygenation to aid cardiopulmonary resuscitation in infants and children. Circulation. 2007;116:1693–700.

    Article  Google Scholar 

  6. 6.

    Barrett CS, Bratton SL, Salvin JW, Laussen PC, Rycus PT, Thiagarajan RR. Neurological injury after extracorporeal membrane oxygenation use to aid pediatric cardiopulmonary resuscitation. Pediatr Crit Care Med. 2009;10:445–51.

    Article  Google Scholar 

  7. 7.

    Cengiz P, Seidel K, Rycus PT, Brogan TV, Roberts JS. Central nervous system complications during pediatric extracorporeal life support: incidence and risk factors. Crit Care Med. 2005;33:2817–24.

    Article  Google Scholar 

  8. 8.

    Weber TR, Kountzman B. Extracorporeal membrane oxygenation for nonneonatal pulmonary and multiple-organ failure. J Pediatr Surg. 1998;33:1605–9.

    CAS  Article  Google Scholar 

  9. 9.

    Fenik JC, Rais-Bahrami K. Neonatal cerebral oximetry monitoring during ECMO cannulation. J Perinatol. 2009;29:376–81.

    CAS  Article  Google Scholar 

  10. 10.

    Liem KD, Hopman JC, Oeseburg B, de Haan AF, Festen C, Kollee LA. Cerebral oxygenation and hemodynamics during induction of extracorporeal membrane oxygenation as investigated by near infrared spectrophotometry. Pediatrics. 1995;95:555–61.

    CAS  PubMed  Google Scholar 

  11. 11.

    Van Heijst A, Liem D, Hopman J, Van Der Staak F, Sengers R. Oxygenation and hemodynamics in left and right cerebral hemispheres during induction of veno-arterial extracorporeal membrane oxygenation. J Pediatr. 2004;144:223–8.

    Article  Google Scholar 

  12. 12.

    Tweed A, Cote J, Lou H, Gregory G, Wade J. Impairment of cerebral blood flow autoregulation in the newborn lamb by hypoxia. Pediatr Res. 1986;20:516–9.

    CAS  Article  Google Scholar 

  13. 13.

    Short BL, Walker LK, Traystman RJ. Impaired cerebral autoregulation in the newborn lamb during recovery from severe, prolonged hypoxia, combined with carotid artery and jugular vein ligation. Crit Care Med. 1994;22:1262–8.

    CAS  Article  Google Scholar 

  14. 14.

    Short BL, Walker LK, Bender KS, Traystman RJ. Impairment of cerebral autoregulation during extracorporeal membrane oxygenation in newborn lambs. Pediatr Res. 1993;33:289–94.

    CAS  Article  Google Scholar 

  15. 15.

    Salen P, Melniker L, Chooljian C, et al. Does the presence or absence of sonographically identified cardiac activity predict resuscitation outcomes of cardiac arrest patients? Am J Emerg Med. 2005;23:459–62.

    Article  Google Scholar 

  16. 16.

    Paden ML, Conrad SA, Rycus PT, Thiagarajan RR, Registry E. Extracorporeal life support organization registry report 2012. ASAIO J. 2013;59:202–10.

    Article  Google Scholar 

  17. 17.

    Maldonado Y, Singh S, Taylor MA. Cerebral near-infrared spectroscopy in perioperative management of left ventricular assist device and extracorporeal membrane oxygenation patients. Curr Opin Anaesthesiol. 2014;27:81–8.

    Article  Google Scholar 

  18. 18.

    Yu Y, Lu Y, Meng L, Han R. Monitoring cerebral ischemia using cerebral oximetry: pros and cons. J Biomed Res. 2015;30:1.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Goldman S, Sutter F, Ferdinand F, Trace C. Optimizing intraoperative cerebral oxygen delivery using noninvasive cerebral oximetry decreases the incidence of stroke for cardiac surgical patients. Heart Surg Forum. 2004;7:E376–81.

    Article  Google Scholar 

  20. 20.

    Murkin JM, Adams SJ, Novick RJ, et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg. 2007;104:51–8.

    Article  Google Scholar 

  21. 21.

    Sood ED, Benzaquen JS, Davies RR, Woodford E, Pizarro C. Predictive value of perioperative near-infrared spectroscopy for neurodevelopmental outcomes after cardiac surgery in infancy. J Thorac Cardiovasc Surg. 2013;145:438–45 (discussion 44–5).

    Article  Google Scholar 

  22. 22.

    Wong JK, Smith TN, Pitcher HT, Hirose H, Cavarocchi NC. Cerebral and lower limb near-infrared spectroscopy in adults on extracorporeal membrane oxygenation. Artif Organs. 2012;36:659–67.

    Article  Google Scholar 

  23. 23.

    Kurth CD, Steven JM, Nicolson SC. Cerebral oxygenation during pediatric cardiac surgery using deep hypothermic circulatory arrest. Anesthesiology. 1995;82:74–82.

    CAS  Article  Google Scholar 

  24. 24.

    Zheng F, Sheinberg R, Yee MS, Ono M, Zheng Y, Hogue CW. Cerebral near-infrared spectroscopy monitoring and neurologic outcomes in adult cardiac surgery patients: a systematic review. Anesth Analg. 2013;116:663–76.

    Article  Google Scholar 

  25. 25.

    Fiser DH. Assessing the outcome of pediatric intensive care. J Pediatr. 1992;121:68–74.

    CAS  Article  Google Scholar 

  26. 26.

    Fiser DH, Long N, Roberson PK, Hefley G, Zolten K, Brodie-Fowler M. Relationship of pediatric overall performance category and pediatric cerebral performance category scores at pediatric intensive care unit discharge with outcome measures collected at hospital discharge and 1- and 6-month follow-up assessments. Crit Care Med. 2000;28:2616–20.

    CAS  Article  Google Scholar 

  27. 27.

    Cashen K, Reeder R, Dalton HJ, et al. Functional status of neonatal and pediatric patients after extracorporeal membrane oxygenation. Pediatr Crit Care Med. 2017;18:561–70.

    Article  Google Scholar 

  28. 28.

    Lin JJ, Banwell BL, Berg RA, et al. Electrographic seizures in children and neonates undergoing extracorporeal membrane oxygenation. Pediatr Crit Care Med. 2017;18:249–57.

    Article  Google Scholar 

  29. 29.

    Cohn SM, Nathens AB, Moore FA, et al. Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation. J Trauma. 2007;62:44–54 (discussion-5).

    Article  Google Scholar 

  30. 30.

    Lima A, van Bommel J, Jansen TC, Ince C, Bakker J. Low tissue oxygen saturation at the end of early goal-directed therapy is associated with worse outcome in critically ill patients. Crit Care. 2009;13(Suppl 5):S13.

    Article  Google Scholar 

  31. 31.

    Storm C, Leithner C, Krannich A, et al. Regional cerebral oxygen saturation after cardiac arrest in 60 patients–a prospective outcome study. Resuscitation. 2014;85:1037–41.

    CAS  Article  Google Scholar 

  32. 32.

    Tsuji M, Saul JP, du Plessis A, et al. Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics. 2000;106:625–32.

    CAS  Article  Google Scholar 

  33. 33.

    Muehlschlegel S, Selb J, Patel M, et al. Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations. Neurocrit Care. 2009;11:288–95.

    Article  Google Scholar 

  34. 34.

    Liem KD, Hopman JC, Kollee LA, Oeseburg B. Assessment of cerebral oxygenation and hemodynamics by near infrared spectrophotometry during induction of ECMO: preliminary results. The ECMO Research Group. Adv Exp Med Biol. 1992;317:841–6.

    CAS  Article  Google Scholar 

  35. 35.

    Ejike JC, Schenkman KA, Seidel K, Ramamoorthy C, Roberts JS. Cerebral oxygenation in neonatal and pediatric patients during veno-arterial extracorporeal life support. Pediatr Crit Care Med. 2006;7:154–8.

    Article  Google Scholar 

  36. 36.

    Papademetriou MD, Tachtsidis I, Elliot MJ, Hoskote A, Elwell CE. Multichannel near infrared spectroscopy indicates regional variations in cerebral autoregulation in infants supported on extracorporeal membrane oxygenation. J Biomed Opt. 2012;17:067008.

    Article  Google Scholar 

  37. 37.

    Papademetriou MD, Tachtsidis I, Leung TS, Elliott MJ, Hoskote A, Elwell CE. Cerebral and peripheral tissue oxygenation in children supported on ECMO for cardio-respiratory failure. Adv Exp Med Biol. 2010;662:447–53.

    Article  Google Scholar 

  38. 38.

    Clair MP, Rambaud J, Flahault A, et al. Prognostic value of cerebral tissue oxygen saturation during neonatal extracorporeal membrane oxygenation. PLoS ONE. 2017;12:e0172991.

    Article  Google Scholar 

  39. 39.

    Mateen FJ, Muralidharan R, Shinohara RT, Parisi JE, Schears GJ, Wijdicks EF. Neurological injury in adults treated with extracorporeal membrane oxygenation. Arch Neurol. 2011;68:1543–9.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Claire Levine, MS, ELS, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA, for the final editing of the text.

Funding

Research reported in this publication was supported by the National Institute of Neurological Disorders and Stroke of the National Institutes of Health under Award Numbers K23NS076674, R21HD096389 and R01NS106292 (MMB). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Melania M. Bembea.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12028_2019_892_MOESM1_ESM.tif

Percentage of time cerebral regional oxygen saturation (rSO2) was ≤ 40% during extracorporeal membrane oxygenation (ECMO) distributed by neurologic outcome at hospital discharge. Neurologic outcome was assessed by Pediatric Cerebral Performance Category. Results of the nonparametric test suggested a significant difference in the median percentage of time that rSO2 was ≤ 40% between patients with favorable and unfavorable outcomes (p < 0.001). (TIFF 170 kb)

12028_2019_892_MOESM2_ESM.tif

Percentage of time cerebral regional oxygen saturation (rSO2) was ≤ 50% during extracorporeal membrane oxygenation (ECMO) distributed by neurologic outcome at hospital discharge. Neurologic outcome was assessed by Pediatric Cerebral Performance Category. Results of the nonparametric test suggested a significant difference in the median percentage of time rSO2 was ≤ 50% between patients with favorable and unfavorable outcomes (p < 0.001). (TIFF 170 kb)

12028_2019_892_MOESM3_ESM.tif

Comparison of the time percentage that cerebral regional oxygen saturation (rSO2) was reduced > 20% from the baseline value during extracorporeal membrane oxygenation (ECMO) between patients with favorable and unfavorable neurologic outcome at hospital discharge. Neurologic outcome was assessed by Pediatric Cerebral Performance Category. Results of the nonparametric test suggested a significant difference in the median percentage of time that rSO2 was reduced > 20% from baseline between patients with favorable and unfavorable outcomes (p = 0.008). (TIFF 206 kb)

12028_2019_892_MOESM4_ESM.docx

Supplementary material 4 (DOCX 23 kb)

12028_2019_892_MOESM5_ESM.docx

Supplementary material 5 (DOCX 23 kb)

12028_2019_892_MOESM6_ESM.docx

Supplementary material 6 (DOCX 21 kb)

12028_2019_892_MOESM7_ESM.docx

Supplementary material 7 (DOCX 21 kb)

12028_2019_892_MOESM8_ESM.docx

Supplementary material 8 (DOCX 18 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsou, PY., Garcia, A.V., Yiu, A. et al. Association of Cerebral Oximetry with Outcomes after Extracorporeal Membrane Oxygenation. Neurocrit Care 33, 429–437 (2020). https://doi.org/10.1007/s12028-019-00892-4

Download citation

Keywords

  • Cerebral oximetry
  • Child
  • Extracorporeal membrane oxygenation
  • Extracorporeal life support
  • Outcome assessment
  • Neuromonitoring