Skip to main content

Advertisement

Log in

Cardiac Dysfunction in Neurocritical Care: An Autonomic Perspective

  • Review
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

A number of neurologic disorders can cause cardiac dysfunction by involving the conductive system and contractile apparatus of the heart. This is especially prominent in the neurocritical care setting where the spectrum of cardiac dysfunction due to acute neurologic injury ranges from trivial and isolated electrocardiographic changes to malignant arrhythmias and sudden death (Table 1). The mechanism of these cardiac complications is complex and not fully understood. An understanding of the neuroanatomical structures and pathways is of immense importance to comprehend the underlying pathophysiology that culminates as cardiac damage and dysregulation. Once the process is initiated, it can complicate and adversely affect the outcome of primary neurologic conditions commonly seen in the neurocritical care setting. Not only are these cardiac disorders under-recognized, there is a paucity of data to formulate evidence-based guidelines regarding early detection, acute management, and preventive strategies. However, certain details of clinical features and their course combined with location of primary neurologic lesion on neuroimaging and data obtained from laboratory investigations can be of great value to develop a strategy to appropriately manage these patients and to prevent adverse outcome from these cardiac complications. In this review, we highlight the mechanisms of cardiac dysfunction due to catastrophic neurologic conditions or due to stress of critical illness. We also address various clinical syndromes of cardiac dysfunction that occur as a result of the neurologic illness and in turn may complicate the course of the primary neurologic condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cannon WB. “Voodoo” death. American Anthropologist, 1942;44(new series):169–181. Am J Public Health. 2002;44(new series):169–81.

    Google Scholar 

  2. Wilson A. The mechanism of death under chloroform. Lancet. 1894. https://doi.org/10.1016/S0140-6736(01)59812-8.

    Article  Google Scholar 

  3. Levy AG. The exciting causes of ventricular fibrillation in animals under chloroform anesthesia. Heart 1913;4:1912–1913.

    Google Scholar 

  4. Levy AG. Chloroform anesthesia, chapter IV. Cambridge: Wood Publishers; 1922. p. 26–43.

    Google Scholar 

  5. Erickson TC. Cardiac activity during epileptic seizures. Arch Neuropsychol. 1939;41:511–8.

    Article  Google Scholar 

  6. Raab W, Stark E, Macmillan WH, Gigee WR. Sympathogenic origin and antiadrenergic prevention of stress-induced myocardial lesions. Am J Cardiol. 1961. https://doi.org/10.1016/0002-9149(61)90207-7.

    Article  PubMed  Google Scholar 

  7. Seyle H. The role of electrolytes in pathogenesis of experimental cardiomyopathies without vascular involvement. Fundam Asp Physiol Pathol. 1965;1:135–60.

    Google Scholar 

  8. Greenhoot JH, Reichenbach DD. Cardiac injury and subarachnoid hemorrhage. J Neurosurg. 1969. https://doi.org/10.3171/jns.1969.30.5.0521.

    Article  PubMed  Google Scholar 

  9. Shepherd JT. The heart as a sensory organ. J Am Coll Cardiol. 1985. https://doi.org/10.1016/S0735-1097(85)80533-7.

    Article  PubMed  Google Scholar 

  10. Wake E, Brack K. Characterization of the intrinsic cardiac nervous system. Auton Neurosci Basic Clin. 2016;199:3–16.

    Article  Google Scholar 

  11. Agarwal SK, Calaresu FR. Electrical stimulation of nucleus tractus solitarius excites vagal preganglionic cardiomotor neurons of the nucleus ambiguus in rats. Brain Res. 1992. https://doi.org/10.1016/0006-8993(92)90833-U.

    Article  PubMed  Google Scholar 

  12. Swanson LW, Sawchenko PE. Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology. 1980. https://doi.org/10.1159/000123111.

    Article  PubMed  Google Scholar 

  13. Melville KI, Blum B, Shister HE, Silver MD. Cardiac ischemic changes and arrhythmias induced by hypothalamic stimulation. Am J Cardiol. 1963. https://doi.org/10.1016/0002-9149(63)90281-9.

    Article  PubMed  Google Scholar 

  14. Zamrini EY, Meador KJ, Loring DW, et al. Unilateral cerebral inactivation produces differential left/right heart rate responses. Neurology. 1990. https://doi.org/10.1212/WNL.40.9.1408.

    Article  PubMed  Google Scholar 

  15. Yoon BW, Morillo CA, Cechetto DF, Hachinski V. Cerebral hemispheric lateralization in cardiac autonomic control. Arch Neurol. 1997. https://doi.org/10.1001/archneur.1997.00550180055012.

    Article  PubMed  Google Scholar 

  16. Hilz MJ, Dütsch M, Perrine K, et al. Hemispheric influence on autonomic modulation and baroreflex sensitivity. Ann Neurol. 2001. https://doi.org/10.1002/ana.1006.

    Article  PubMed  Google Scholar 

  17. Oppenheimer SM, Gelb A, Girvin JP, Hachinski VC. Cardiovascular effects of human insular cortex stimulation. Neurology. 1992. https://doi.org/10.1212/WNL.42.9.1727.

    Article  PubMed  Google Scholar 

  18. Critchley HD, Corfield DR, Chandler MP, et al. Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation in humans. J Physiol. 2000. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00259.x.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Meyer S, Strittmatter M, Fischer C, et al. Lateralization in autonomic dysfunction in ischemic stroke involving the insular cortex. NeuroReport. 2004;15:357–61.

    Article  CAS  PubMed  Google Scholar 

  20. Barron SA, Rogovski Z, Hemli J. Autonomic consequences of cerebral hemisphere infarction. Stroke. 1994. https://doi.org/10.1161/01.STR.25.1.113.

    Article  PubMed  Google Scholar 

  21. Oppenheimer SM, Cechetto DF. Cardiac chronotropic organization of the rat insular cortex. Brain Res. 1990. https://doi.org/10.1016/0006-8993(90)91796-J.

    Article  PubMed  Google Scholar 

  22. Guyton AC. Guyton and Hall textbook of medical physiology. Amsterdam: Elsevier; 2015. p. 110–2.

    Google Scholar 

  23. Winter J, Tanko AS, Brack KE, et al. Differential cardiac responses to unilateral sympathetic nerve stimulation in the isolated innervated rabbit heart. Auton Neurosci Basic Clin. 2012. https://doi.org/10.1016/j.autneu.2011.08.004.

    Article  Google Scholar 

  24. Ng GA, Mantravadi RK, Walker WH, et al. Sympathetic nerve stimulation produces spatial heterogeneities of action potential restitution. Hear Rhythm. 2009. https://doi.org/10.1016/j.hrthm.2009.01.035.

    Article  Google Scholar 

  25. Volders PG, Stengl M, van Opstal JM, et al. Probing the contribution of IKs to canine ventricular repolarization: key role for beta-adrenergic receptor stimulation. Circulation. 2003. https://doi.org/10.1161/01.CIR.0000068344.54010.B3.

    Article  PubMed  Google Scholar 

  26. Karagueuzian HS, Chen PS. Graded response and restitution hypotheses of ventricular vulnerability to fibrillation: insights into the mechanism of initiation of fibrillation. J Electrocardiol. 1999;32:87–91.

    Article  PubMed  Google Scholar 

  27. Fox JJ, McHarg JL, Gilmour RF. Ionic mechanism of electrical alternans. Am J Physiol Heart Circ Physiol. 2002. https://doi.org/10.1152/ajpheart.00612.2001.

    Article  PubMed  Google Scholar 

  28. Bass BG. Restitution of the action potential in cat papillary muscle. Am J Physiol. 1975;228:1717–24, 2753–60.

  29. Ng GA. Neuro-cardiac interaction in malignant ventricular arrhythmia and sudden cardiac death. Auton Neurosci. 2016. https://doi.org/10.1016/j.autneu.2016.07.001.

    Article  PubMed  Google Scholar 

  30. Karma A. Electrical alternans and spiral wave breakup in cardiac tissue. Chaos. 1994. https://doi.org/10.1063/1.166024.

    Article  PubMed  Google Scholar 

  31. Magnano AR, Holleran S, Ramakrishnan R, et al. Autonomic nervous system influences on QT interval in normal subjects. J Am Coll Cardiol. 2002. https://doi.org/10.1016/S0735-1097(02)01852-1.

    Article  PubMed  Google Scholar 

  32. Rosenbaum DS, Jackson LE, Smith JM, et al. Electrical alternans and vulnerability to ventricular arrhythmias. N Engl J Med. 1994. https://doi.org/10.1056/NEJM199401273300402.

    Article  PubMed  Google Scholar 

  33. Pastore JM, Girouard SD, Laurita KR, et al. Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. Circulation. 1999. https://doi.org/10.1161/01.CIR.99.10.1385.

    Article  PubMed  Google Scholar 

  34. Cao JM, Chen LS, KenKnight BH, et al. Nerve sprouting and sudden cardiac death. Circ Res. 2000. https://doi.org/10.1161/01.RES.86.7.816.

    Article  PubMed  Google Scholar 

  35. Lee TM, Lin SZ, Chang NC. Antiarrhythmic effect of lithium in rats after myocardial infarction by activation of Nrf2/HO-1 signaling. Free Radic Biol Med. 2014. https://doi.org/10.1016/j.freeradbiomed.2014.08.022.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xu B, Xu H, Cao H, et al. Intermedin improves cardiac function and sympathetic neural remodeling in a rat model of post myocardial infarction heart failure. Mol Med Rep. 2017. https://doi.org/10.3892/mmr.2017.6776.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Samuels MA. Neurogenic heart disease: a unifying hypothesis. Am J Cardiol. 1987. https://doi.org/10.1016/0002-9149(87)90678-3.

    Article  PubMed  Google Scholar 

  38. Samuels MA. The brain–heart connection. Circulation. 2007;116:77–84.

    Article  PubMed  Google Scholar 

  39. Liu M, Xu F, Tao T, et al. Molecular mechanisms of stress-induced myocardial injury in a rat model simulating posttraumatic stress disorder. Psychosom Med. 2016. https://doi.org/10.1097/PSY.0000000000000353.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kawano H, Okada R, Yano K. Histological study on the distribution of autonomic nerves in the human heart. Heart Vessels. 2003. https://doi.org/10.1007/s003800300005.

    Article  PubMed  Google Scholar 

  41. Kolman BS, Verrier RL, Lown B. The effect of vagus nerve stimulation upon vulnerability of the canine ventricle. Role of sympathetic parasympathetic interactions. Circulation. 1975. https://doi.org/10.1161/01.CIR.52.4.578.

    Article  PubMed  Google Scholar 

  42. Ng GA, Brack KE, Patel VH, Coote JH. Autonomic modulation of electrical restitution, alternans and ventricular fibrillation initiation in the isolated heart. Cardiovasc Res. 2007. https://doi.org/10.1016/j.cardiores.2006.12.001.

    Article  PubMed  Google Scholar 

  43. Goldstein DS. The electrocardiogram in stroke: relationship to pathophysiological type and comparison with prior tracings. Stroke. 1979. https://doi.org/10.1161/01.STR.10.3.253.

    Article  PubMed  Google Scholar 

  44. Putaala J, Lehto M, Meretoja A, et al. In-hospital cardiac complications after intracerebral hemorrhage. Int J Stroke. 2014. https://doi.org/10.1111/ijs.12180.

    Article  PubMed  Google Scholar 

  45. Stone J, Mor-Avi V, Ardelt A, Lang RM. Frequency of Inverted electrocardiographic T waves (cerebral T waves) in patients with acute strokes and their relation to left ventricular wall motion abnormalities. Am J Cardiol. 2018. https://doi.org/10.1016/j.amjcard.2017.09.025.

    Article  PubMed  Google Scholar 

  46. Wong KYK, Mac Walter RS, Douglas D, et al. Long QTc predicts future cardiac death in stroke survivors. Heart. 2003. https://doi.org/10.1136/heart.89.4.377.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ibrahim GM, MacDonald RL. Electrocardiographic changes predict angiographic vasospasm after aneurysmal subarachnoid hemorrhage. Stroke. 2012. https://doi.org/10.1161/STROKEAHA.112.658153.

    Article  PubMed  Google Scholar 

  48. Hromádka M, Seidlerová J, Rohan V, et al. Prolonged corrected QT interval as a predictor of clinical outcome in acute ischemic stroke. J Stroke Cerebrovasc Dis. 2016. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.08.005.

    Article  PubMed  Google Scholar 

  49. Lim Z, Gibbs K, Potts JE, Sanatani S. A review of sudden unexpected death in the young in British Columbia. Can J Cardiol. 2010;26:22–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fogelholm R. Subarachnoid hemorrhage in middle-Finland: incidence, early prognosis and indications for neurosurgical treatment. Stroke. 1981. https://doi.org/10.1161/01.STR.12.3.296.

    Article  PubMed  Google Scholar 

  51. Schievink WI, Wijdicks EF, Parisi JE, et al. Sudden death from aneurysmal subarachnoid hemorrhage. Neurology. 1995;45:871–4.

    Article  CAS  PubMed  Google Scholar 

  52. Sheikhazadi A, Gharehdaghi J. Survey of sudden death from aneurysmal subarachnoid hemorrhage in cadavers referred to legal medicine organization of Tehran, 2001–2005. Am J Forensic Med Pathol. 2009. https://doi.org/10.1097/PAF.0b013e3181bfcd64.

    Article  PubMed  Google Scholar 

  53. Ljunggren B, Säveland H, Brandt L, Zygmunt S. Early operation and overall outcome in aneurysmal subarachnoid hemorrhage. J Neurosurg. 1985. https://doi.org/10.3171/jns.1985.62.4.0547.

    Article  PubMed  Google Scholar 

  54. Johnston KC, Li JY, Lyden PD, et al. Medical and neurological complications of ischemic stroke: experience from the RANTTAS trial. Stroke. 1998. https://doi.org/10.1161/01.STR.29.2.447.

    Article  PubMed  Google Scholar 

  55. Silver FL, Norris JW, Lewis AJ, Hachinski VC. Early mortality following stroke: a prospective review. Stroke. 1984. https://doi.org/10.1161/01.STR.15.3.492.

    Article  PubMed  Google Scholar 

  56. Sörös P, Hachinski V. Cardiovascular and neurological causes of sudden death after ischaemic stroke. Lancet Neurol. 2012;11:179–88.

    Article  PubMed  Google Scholar 

  57. Nashef L, So EL, Ryvlin P, Tomson T. Unifying the definitions of sudden unexpected death in epilepsy. Epilepsia. 2012;53:227–33.

    Article  PubMed  Google Scholar 

  58. Walczak TS, Leppik IE, D’Amelio M, et al. Incidence and risk factors in sudden unexpected death in epilepsy: a prospective cohort study. Neurology. 2001. https://doi.org/10.1212/WNL.56.4.519.

    Article  PubMed  Google Scholar 

  59. Mu J, Liu L, Zhang Q, et al. Causes of death among people with convulsive epilepsy in rural West China: a prospective study. Neurology. 2011. https://doi.org/10.1212/WNL.0b013e318223c784.

    Article  PubMed  Google Scholar 

  60. Brotherstone R, Blackhall B, McLellan A. Lengthening of corrected QT during epileptic seizures. Epilepsia. 2010. https://doi.org/10.1111/j.1528-1167.2009.02281.x.

    Article  PubMed  Google Scholar 

  61. Cebelin MS, Hirsch CS. Human stress cardiomyopathy: myocardial lesions in victims of homicidal assaults without internal injuries. Hum Pathol. 1980. https://doi.org/10.1016/S0046-8177(80)80129-8.

    Article  PubMed  Google Scholar 

  62. Sato H. Takotsubo-like left ventricular dysfunction due to multivessel coronary spasm. Tokyo: Kagakuhyoronsha Publishing Company; 1990. p. 56–64.

    Google Scholar 

  63. Bybee KA, Kara T, Prasad A, et al. Systematic review: transient left ventricular apical ballooning: a syndrome that mimics ST-segment elevation myocardial infarction. Ann Intern Med. 2004;141:858–65.

    Article  PubMed  Google Scholar 

  64. Templin C, Ghadri JR, Diekmann J, et al. Clinical features and outcomes of Takotsubo (stress) cardiomyopathy. N Engl J Med. 2015. https://doi.org/10.1056/NEJMoa1406761.

    Article  PubMed  Google Scholar 

  65. Watanabe H, Kodama M, Okura Y, et al. Impact of earthquakes on Takotsubo cardiomyopathy. J Am Med Assoc. 2005;294:305–7.

    Article  CAS  Google Scholar 

  66. Y-Hassan S, Settergren M, Henareh L. Sepsis-induced myocardial depression and Takotsubo syndrome. Acute Card Care. 2014. https://doi.org/10.3109/17482941.2014.920089.

    Article  PubMed  Google Scholar 

  67. Zaroff JG, Rordorf GA, Ogilvy CS, Picard MH. Regional patterns of left ventricular systolic dysfunction after subarachnoid hemorrhage: evidence for neurally mediated cardiac injury. J Am Soc Echocardiogr. 2000. https://doi.org/10.1067/mje.2000.105763.

    Article  PubMed  Google Scholar 

  68. Banki N, Kopelnik A, Tung P, et al. Prospective analysis of prevalence, distribution, and rate of recovery of left ventricular systolic dysfunction in patients with subarachnoid hemorrhage. J Neurosurg. 2006. https://doi.org/10.3171/jns.2006.105.1.15.

    Article  PubMed  Google Scholar 

  69. Sugimoto K, Watanabe E, Yamada A, et al. Prognostic implications of left ventricular wall motion abnormalities associated with subarachnoid hemorrhage. Int Heart J. 2008. https://doi.org/10.1536/ihj.49.75.

    Article  PubMed  Google Scholar 

  70. Khush K, Kopelnik A, Tung P, et al. Age and aneurysm position predict patterns of left ventricular dysfunction after subarachnoid hemorrhage. J Am Soc Echocardiogr. 2005. https://doi.org/10.1016/j.echo.2004.08.045.

    Article  PubMed  Google Scholar 

  71. Kothavale A, Banki NM, Kopelnik A, et al. Predictors of left ventricular regional wall motion abnormalities after subarachnoid hemorrhage. Neurocrit Care. 2006. https://doi.org/10.1385/NCC:4:3:199.

    Article  PubMed  Google Scholar 

  72. Kono T, Morita H, Kuroiwa T, et al. Left ventricular wall motion abnormalities in patients with subarachnoid hemorrhage: neurogenic stunned myocardium. J Am Coll Cardiol. 1994. https://doi.org/10.1016/0735-1097(94)90008-6.

    Article  PubMed  Google Scholar 

  73. Kuroiwa T, Morita H, Tanabe H, Ohta T. Significance of ST segment elevation in electrocardiograms in patients with ruptured cerebral aneurysms. Acta Neurochir (Wien). 1995. https://doi.org/10.1007/BF01420064.

    Article  Google Scholar 

  74. Kilbourn KJ, Levy S, Staff I, et al. Clinical characteristics and outcomes of neurogenic stress cardiomyopathy in aneurysmal subarachnoid hemorrhage. Clin Neurol Neurosurg. 2013. https://doi.org/10.1016/j.clineuro.2012.09.006.

    Article  PubMed  Google Scholar 

  75. Murthy SB, Shah S, Venkatasubba Rao CP, et al. Clinical characteristics of myocardial stunning in acute stroke. J Clin Neurosci. 2014;21:1279–82.

    Article  PubMed  Google Scholar 

  76. Crago EA, Kerr ME, Kong Y, et al. The impact of cardiac complications on outcome in the SAH population. Acta Neurol Scand. 2004. https://doi.org/10.1111/j.1600-0404.2004.00311.x.

    Article  PubMed  Google Scholar 

  77. Temes RE, Tessitore E, Schmidt JM, et al. Left ventricular dysfunction and cerebral infarction from vasospasm after subarachnoid hemorrhage. Neurocrit Care. 2010. https://doi.org/10.1007/s12028-010-9447-x.

    Article  PubMed  Google Scholar 

  78. Michael Frangiskakis J, Hravnak M, Crago EA, et al. Ventricular arrhythmia risk after subarachnoid hemorrhage. Neurocrit Care. 2009. https://doi.org/10.1007/s12028-009-9188-x.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kallmünzer B, Breuer L, Kahl N, et al. Serious cardiac arrhythmias after stroke: incidence, time course, and predictors—a systematic, prospective analysis. Stroke. 2012. https://doi.org/10.1161/STROKEAHA.112.664318.

    Article  PubMed  Google Scholar 

  80. Fukui S, Otani N, Katoh H, et al. Female gender as a risk factor for hypokalemia and QT prolongation after subarachnoid hemorrhage. Neurology. 2002;59:134–6.

    Article  CAS  PubMed  Google Scholar 

  81. Wira CR, Rivers E, Martinez-Capolino C, et al. Cardiac complications in acute ischemic stroke. West J Emerg Med. 2011. https://doi.org/10.5811/westjem.2011.2.1765.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Takeuchi S, Nagatani K, Otani N, et al. Electrocardiograph abnormalities in intracerebral hemorrhage. J Clin Neurosci. 2015. https://doi.org/10.1016/j.jocn.2015.04.028.

    Article  PubMed  Google Scholar 

  83. Kerr G, Ray G, Wu O, et al. Elevated troponin after stroke: a systematic review. Cerebrovasc Dis. 2009;28:220–6.

    Article  CAS  PubMed  Google Scholar 

  84. Song HS, Back JH, Jin DK, et al. Cardiac troponin T elevation after stroke: relationships between elevated serum troponin T, stroke location, and prognosis. J Clin Neurol. 2008. https://doi.org/10.3988/jcn.2008.4.2.75.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Parekh N, Venkatesh B, Cross D, et al. Cardiac troponin I predicts myocardial dysfunction in aneurysmal subarachnoid hemorrhage. J Am Coll Cardiol. 2000. https://doi.org/10.1016/S0735-1097(00)00857-3.

    Article  PubMed  Google Scholar 

  86. Bulsara KR, McGirt MJ, Liao L, et al. Use of the peak troponin value to differentiate myocardial infarction from reversible neurogenic left ventricular dysfunction associated with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2003. https://doi.org/10.3171/jns.2003.98.3.0524.

    Article  PubMed  Google Scholar 

  87. Zhang YH, Zhu J, Song YC. Suppressing sympathetic activation with clonidine on ventricular arrhythmias in congestive heart failure. Int J Cardiol. 1998. https://doi.org/10.1016/S0167-5273(98)00127-2.

    Article  PubMed  Google Scholar 

  88. Kagawa K, Hayashi Y, Itoh I, et al. Identification of the central imidazoline receptor subtype involved in modulation of halothane-epinephrine arrhythmias in rats. Anesth Analg. 2005. https://doi.org/10.1213/01.ANE.0000184185.69471.F6.

    Article  PubMed  Google Scholar 

  89. La Rovere MT, Bigger JT, Marcus FI, et al. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet. 1998. https://doi.org/10.1016/S0140-6736(97)11144-8.

    Article  PubMed  Google Scholar 

  90. De Ferrari GM, Crijns HJGM, Borggrefe M, et al. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J. 2011. https://doi.org/10.1093/eurheartj/ehq391.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Premchand RK, Sharma K, Mittal S, et al. Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial. J Card Fail. 2014. https://doi.org/10.1016/j.cardfail.2014.08.009.

    Article  PubMed  Google Scholar 

  92. Gold MR, Van Veldhuisen DJ, Hauptman PJ, et al. Vagus nerve stimulation for the treatment of heart failure: the INOVATE-HF trial. J Am Coll Cardiol. 2016. https://doi.org/10.1016/j.jacc.2016.03.525.

    Article  PubMed  Google Scholar 

  93. Li M. Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation. 2003. https://doi.org/10.1161/01.CIR.0000105721.71640.DA.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kim DH, Joseph M, Ziadi S, et al. Increases in cardiac output can reverse flow deficits from vasospasm independent of blood pressure: a study using xenon computed tomographic measurement of cerebral blood flow. Neurosurgery. 2003. https://doi.org/10.1227/01.NEU.0000088567.59324.78.

    Article  PubMed  Google Scholar 

  95. Levy ML, Rabb CH, Zelman V, Giannotta SL. Cardiac performance enhancement from dobutamine in patients refractory to hypervolemic therapy for cerebral vasospasm. J Neurosurg. 1993. https://doi.org/10.3171/jns.1993.79.4.0494.

    Article  PubMed  Google Scholar 

  96. Naidech A, Du Y, Kreiter KT, et al. Dobutamine versus milrinone after subarachnoid hemorrhage. Neurosurgery. 2005. https://doi.org/10.1227/01.NEU.0000144780.97392.D7.

    Article  PubMed  Google Scholar 

  97. Taccone FS, Lubicz B, Piagnerelli M, et al. Cardiogenic shock with stunned myocardium during triple-h therapy treated with intra-aortic balloon pump counterpulsation. Neurocrit Care. 2009. https://doi.org/10.1007/s12028-008-9135-2.

    Article  PubMed  Google Scholar 

  98. Vanderschuren A, Hantson P. Hyperinsulinemic euglycemia therapy for stunned myocardium following subarachnoid hemorrhage. J Neurosurg. 2009. https://doi.org/10.3171/2008.4.17507.

    Article  PubMed  Google Scholar 

  99. Devos J, Peeters A, Wittebole X, Hantson P. High-dose insulin therapy for neurogenic-stunned myocardium after stroke. BMJ Case Rep. 2012. https://doi.org/10.1136/bcr-2012-006620.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Brücken A, Derwall M, Bleilevens C, et al. Brief inhalation of nitric oxide increases resuscitation success and improves 7-day-survival after cardiac arrest in rats: a randomized controlled animal study. Crit Care. 2015. https://doi.org/10.1186/s13054-015-1128-x.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. Robert P Lisak, MD for his help in editing the manuscript and his thoughtful comments.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

MI and KS were responsible for study conception, literature search, writing and editing the manuscript. BS and WM were involved in editing the manuscript.

Corresponding author

Correspondence to Kushak Suchdev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, M.S., Samuel, B., Mohamed, W. et al. Cardiac Dysfunction in Neurocritical Care: An Autonomic Perspective. Neurocrit Care 30, 508–521 (2019). https://doi.org/10.1007/s12028-018-0636-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-018-0636-3

Keywords

Navigation