Skip to main content

Advertisement

Log in

Tolerance, loss of tolerance and regaining tolerance to self by immune-mediated events

  • Mechanism in Autoimmunity
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Autoimmunity has both beneficial and harmful aspects. Beneficial aspects include: (1) removal of released intracytoplasmic antigens (ags) (cells at the end of their life span or damaged by outside agents) by specific nonpathogenic IgM autoantibodies and mononuclear cells and (2) recognition and elimination of cancerous cells. In contrast, harmful aspects include: (1) mounting a pathogenic autoimmune response against a tissue-derived ag, a ‘modified self,’ resulting in autoimmune disease and (2) inability to recognize and eliminate a cancerous clone. The immune system continuously faces internal and external influences; however, even when it is compromised or overwhelmed, it will still endeavor to regain and maintain tolerance to self. To promote this, we developed a ‘modified vaccination technique’ (MVT) (described as the third vaccination method after active and passive immunizations). It has two components: purified exogenous/endogenous ag (i.e., target ag) and a high-titer-specific antibody (ab) against the target ag made into an immune complex (IC) with predetermined immune-inducing components. The MVT works by ab information transfer (production of same class of immunoglobulin with the same specificity against the target ag that is present in the vaccine), thereby re-establishing tolerance to self (caused by exogenous/endogenous ags) following repeated administration of appropriate ICs. This vaccination technique can be used both prophylactically and therapeutically, and it mimics the immune system’s natural abilities to respond to corrective information specifically, rapidly, safely and with minimal side effects and makes this approach a novel solution for many disorders that are difficult or impossible to cure or manage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

aab:

Autoantibody

aag:

Autoantigen

ab:

Antibody

ag:

Antigen

BB:

Brush border

HN:

Heymann nephritis

IC:

Immune complex

MM:

Multiple myeloma

MVT:

Modified vaccination technique

rKF3:

Rat kidney fraction 3

rarKF3:

Rat anti-rat kidney fraction 3

References

  1. Weir DM, Pinckard RN, Elson CJ, Suckling DE. Naturally occurring anti-tissue antibodies in rat sera. Clin Exp Immunol. 1966;1(4):433–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Weir DM, Elson CJ. Antitissue antibodies and immunological tolerance to self. Arthritis Rheum. 1969;12(3):254–60.

    Article  CAS  PubMed  Google Scholar 

  3. Weir DM, Pinckard RN. Failure to induce tolerance to rat tissue antigens. Immunology. 1967;13(4):373–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Weir DM. The immune response after tissue injury. Pathol Eur. 1966;1(1):108–18.

    CAS  PubMed  Google Scholar 

  5. Barabas AZ, Cole CD, Barabas AD, Lafreniere R. Production of a new model of slowly progressive Heymann nephritis. Int J Exp Pathol. 2003;84(6):245–58.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Barabas AZ, Cole CD, Barabas AD, Lafreniere R. Production of Heymann nephritis by a chemically modified renal antigen. Int J Exp Pathol. 2004;85(5):277–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rich MW. Drug-induced lupus. The list of culprits grows. Postgrad Med. 1996;100(3):299–308.

    Article  CAS  PubMed  Google Scholar 

  8. Soldan SS, Jacobson S. Infection and multiple sclerosis. In: Shoenfeld Y, Rosenzweig LJ, editors. Infection and autoimmunity. Amsterdam: Elsevier; 2004. p. 559–82.

    Chapter  Google Scholar 

  9. Totoritis MC, Rubin RL. Drug-induced lupus. Genetic, clinical, and laboratory features. Postgrad Med. 1985;78(3):149–61.

    Article  CAS  PubMed  Google Scholar 

  10. Wucherpfennig KW. Mechanisms for the induction of autoimmunity by infectious agents. J Clin Invest. 2001;108(8):1097–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yung RL, Richardson BC. Drug-induced lupus. Rheum Dis Clin N Am. 1994;20(1):61–86.

    CAS  Google Scholar 

  12. Boes M, Schmidt T, Linkemann K, Beaudette BC, Marshak-Rothstein A, Chen J. Accelerated development of IgG autoantibodies and autoimmune disease in the absence of secreted IgM. Proc Natl Acad Sci USA. 2000;97(3):1184–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Quartier P, Potter PK, Ehrenstein MR, Walport MJ, Botto M. Predominant role of IgM-dependent activation of the classical pathway in the clearance of dying cells by murine bone marrow-derived macrophages in vitro. Eur J Immunol. 2005;35(1):252–60.

    Article  CAS  PubMed  Google Scholar 

  14. Wermeling F, Karlsson MC, McGaha TL. An anatomical view on macrophages in tolerance. Autoimmun Rev. 2009;9(1):49–52.

    Article  CAS  PubMed  Google Scholar 

  15. Manson JJ, Mauri C, Ehrenstein MR. Natural serum IgM maintains immunological homeostasis and prevents autoimmunity. Springer Semin Immunopathol. 2005;26(4):425–32.

    Article  CAS  PubMed  Google Scholar 

  16. Ogden CA, Kowalewski R, Peng Y, Montenegro V, Elkon KB. IgM is required for efficient complement mediated phagocytosis of apoptotic cells in vivo. Autoimmunity. 2005;38(4):259–64.

    Article  CAS  PubMed  Google Scholar 

  17. Avrameas S. Natural autoantibodies: from ‘horror autotoxicus’ to ‘gnothi seauton’. Immunol Today. 1991;12(5):154–9.

    CAS  PubMed  Google Scholar 

  18. Zwart B, Ciurana C, Rensink I, Manoe R, Hack CE, Aarden LA. Complement activation by apoptotic cells occurs predominantly via IgM and is limited to late apoptotic (secondary necrotic) cells. Autoimmunity. 2004;37(2):95–102.

    Article  CAS  PubMed  Google Scholar 

  19. Blank M, Shoenfeld Y. B cell targeted therapy in autoimmunity. J Autoimmun. 2007;28(2–3):62–8.

    Article  CAS  PubMed  Google Scholar 

  20. Byrd JC, Waselenko JK, Maneatis TJ, Murphy T, Ward FT, Monahan BP, et al. Rituximab therapy in hematologic malignancy patients with circulating blood tumor cells: association with increased infusion-related side effects and rapid blood tumor clearance. J Clin Oncol. 1999;17(3):791–5.

    Article  CAS  PubMed  Google Scholar 

  21. Dorner T, Radbruch A, Burmester GR. B-cell-directed therapies for autoimmune disease. Nat Rev Rheumatol. 2009;5(8):433–41.

    Article  PubMed  Google Scholar 

  22. Mok CC. Rituximab for the treatment of rheumatoid arthritis: an update. Drug Des Devel Ther. 2014;8:87–100.

    Google Scholar 

  23. Perosa F, Favoino E, Caragnano MA, Prete M, Dammacco F. CD20: a target antigen for immunotherapy of autoimmune diseases. Autoimmun Rev. 2005;4(8):526–31.

    Article  CAS  PubMed  Google Scholar 

  24. Rommer PS, Dudesek A, Stuve O, Zettl UK. Monoclonal antibodies in treatment of multiple sclerosis. Clin Exp Immunol. 2014;175(3):373–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Townsend MJ, Monroe JG, Chan AC. B-cell targeted therapies in human autoimmune diseases: an updated perspective. Immunol Rev. 2010;237(1):264–83.

    Article  CAS  PubMed  Google Scholar 

  26. Barabas AZ, Cole CD, Barabas AD, Lafreniere R. Down-regulation of pathogenic autoantibody response in a slowly progressive Heymann nephritis kidney disease model. Int J Exp Pathol. 2004;85(6):321–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barabas AZ, Lafreniere R. Antigen-specific down-regulation of immunopathological events in an experimental autoimmune kidney disease. Autoimmun Rev. 2005;4(8):565–70.

    Article  CAS  PubMed  Google Scholar 

  28. Barabas AZ, Cole CD, Lafreniere R, Weir DM. Regaining tolerance to a self-antigen by the modified vaccination technique. Clin Rev Allergy Immunol. 2013;45(2):193–201.

    Article  CAS  PubMed  Google Scholar 

  29. Borchers AT, Naguwa SM, Keen CL, Gershwin ME. The implications of autoimmunity and pregnancy. J Autoimmun. 2010;34(3):J287–99.

    Article  CAS  PubMed  Google Scholar 

  30. Barabas AZ, Cole CD, Barabas AD, Bahlis NJ, Lafreniere R. A vaccination technique to combat presently untreatable chronic ailments. Bioprocess J. 2007;6(4):12–8.

    Article  Google Scholar 

  31. Barabas AZ, Cole CD, Barabas AD, Graeff RM, Lafreniere R, Weir DM. Modified vaccination technique for prophylactic and therapeutic applications to combat endogenous antigen-induced disorders. Scand J Immunol. 2010;71(3):125–33.

    Article  CAS  PubMed  Google Scholar 

  32. Feldmann M, Steinman L. Design of effective immunotherapy for human autoimmunity. Nature. 2005;435(7042):612–9.

    Article  CAS  PubMed  Google Scholar 

  33. Hogan SL, Muller KE, Jennette JC, Falk RJ. A review of therapeutic studies of idiopathic membranous glomerulopathy. Am J Kidney Dis. 1995;25(6):862–75.

    Article  CAS  PubMed  Google Scholar 

  34. Pani A. Standard immunosuppressive therapy of immune-mediated glomerular diseases. Autoimmun Rev. 2013;12(8):848–53.

    Article  CAS  PubMed  Google Scholar 

  35. Perna A, Schieppati A, Zamora J, Giuliano GA, Braun N, Remuzzi G. Immunosuppressive treatment for idiopathic membranous nephropathy: a systematic review. Am J Kidney Dis. 2004;44(3):385–401.

    Article  PubMed  Google Scholar 

  36. Barabas AZ, Cole CD, Kovacs ZB, Lafreniere R. Elevated antibody response by antigen presentation in immune complexes. Med Sci Monit. 2007;13(5):BR119–24.

    CAS  PubMed  Google Scholar 

  37. Barabas AZ, Weir DM, Cole CD, Barabas AD, Bahlis NJ, Graeff RM, et al. Preventing and treating chronic disorders using the modified vaccination technique. Front Biosci. 2009;14:3892–8.

    Article  CAS  Google Scholar 

  38. Barabas AZ, Cole CD, Sensen M, Lafreniere R. Production of heterologous IgG antibody against Heymann nephritis antigen by injections of immune complexes. Int J Exp Pathol. 2012;93(1):11–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mackay IR. Travels and travails of autoimmunity: a historical journey from discovery to rediscovery. Autoimmun Rev. 2010;9(5):A251–8.

    Article  CAS  PubMed  Google Scholar 

  40. Selmi C. Autoimmunity in 2012. Clin Rev Allergy Immunol. 2013;45(2):290–301.

    Article  CAS  PubMed  Google Scholar 

  41. Sioud M. Does our current understanding of immune tolerance, autoimmunity, and immunosuppressive mechanisms facilitate the design of efficient cancer vaccines? Scand J Immunol. 2009;70(6):516–25.

    Article  CAS  PubMed  Google Scholar 

  42. Barabas AZ, Cole CD, Barabas AD, Graeff RM, Lafreniere R, Weir DM. Correcting autoimmune anomalies in autoimmune disorders by immunological means, employing the modified vaccination technique. Autoimmun Rev. 2009;8(7):552–7.

    Article  CAS  PubMed  Google Scholar 

  43. Nahta R, Esteva FJ. Trastuzumab: triumphs and tribulations. Oncogene. 2007;26(25):3637–43.

    Article  CAS  PubMed  Google Scholar 

  44. Heymann W, Hackel DB, Harwood S, Wilson SG, Hunter JLP. Production of nephritic syndrome in rats by Freund’s adjuvant and rat kidney suspensions. Proc Soc Exp Biol Med. 1959;100:660–4.

    Article  CAS  PubMed  Google Scholar 

  45. Barabas AZ, Cole CD, Barabas AD, Cowan JM, Yoon CS, Waisman DM, et al. Presence of immunoglobulin M antibodies around the glomerular capillaries and in the mesangium of normal and passive Heymann nephritis rats. Int J Exp Pathol. 2004;85(4):201–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barabas AZ, Cole CD, Lafreniere R, Weir DM. Implicated autoantibodies in a kidney disease. In: Jenkins GE, Hall JI, editors. Autoantibodies: detection, pathogenicity and health implications. Hauppauge: Nova Science Publishers, Inc; 2012. p. 1–36.

    Google Scholar 

  47. Andres G, Brentjens JR, Caldwell PR, Camussi G, Matsuo S. Formation of immune deposits and disease. Lab Invest. 1986;55(5):510–20.

    CAS  PubMed  Google Scholar 

  48. Cameron JS. Membranous nephropathy–still a treatment dilemma. N Engl J Med. 1992;327(9):638–9.

    Article  CAS  PubMed  Google Scholar 

  49. Ronco P, Debiec H. Molecular dissection of target antigens and nephritogenic antibodies in membranous nephropathy: towards epitope-driven therapies. J Am Soc Nephrol. 2006;17(7):1772–4.

    Article  CAS  PubMed  Google Scholar 

  50. Barabas AZ, Cole CD, Barabas AD, Lafreniere R. Downregulation of a pathogenic autoantibody response by IgM autoantibodies directed against the nephritogenic antigen in slowly progressive Heymann nephritis. Pathol Int. 2006;56(4):181–90.

    Article  CAS  PubMed  Google Scholar 

  51. Jaini R, Kesaraju P, Johnson JM, Altuntas CZ, Jane-Wit D, Tuohy VK. An autoimmune-mediated strategy for prophylactic breast cancer vaccination. Nat Med. 2010;16(7):799–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. von Karsa L, Arbyn M, De Vuyst H, Dillner J, Dillner L, Franceschi S, et al. European guidelines for quality assurance in cervical cancer screening. Summary of the supplements on HPV screening and vaccination. Papillomavirus Res. 2015;1:22–31.

    Article  Google Scholar 

  53. Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol. 1999;17(9):2639–48.

    Article  CAS  PubMed  Google Scholar 

  54. Kabe KL, Kolesar JM. Role of trastuzumab in adjuvant therapy for locally invasive breast cancer. Am J Health Syst Pharm. 2006;63(6):527–33.

    Article  CAS  PubMed  Google Scholar 

  55. Munshi C, Aarhus R, Graeff R, Walseth TF, Levitt D, Lee HC. Identification of the enzymatic active site of CD38 by site-directed mutagenesis. J Biol Chem. 2000;275(28):21566–71.

    Article  CAS  PubMed  Google Scholar 

  56. Munshi CB, Fryxell KB, Lee HC, Branton WD. Large-scale production of human CD38 in yeast by fermentation. Methods Enzymol. 1997;280:318–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from an anonymous donor. All authors have contributed to, critically reviewed and approved this article. None of the authors has any conflict of interest to declare. We acknowledge the assistance of our research associate, Zoltan Kovacs, in computer and laboratory-related work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpad Zsigmond Barabas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barabas, A.Z., Cole, C.D., Graeff, R.M. et al. Tolerance, loss of tolerance and regaining tolerance to self by immune-mediated events. Immunol Res 65, 402–409 (2017). https://doi.org/10.1007/s12026-016-8842-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-016-8842-6

Keywords

Navigation