Immunologic Research

, Volume 65, Issue 1, pp 355–362 | Cite as

Cross-reactivity between annexin A2 and Beta-2-glycoprotein I in animal models of antiphospholipid syndrome

  • R. Weiss
  • A. Bitton
  • L. Nahary
  • M. T. Arango
  • I. Benhar
  • M. Blank
  • Y. Shoenfeld
  • J. Chapman
Mechanism in Autoimmunity


Antiphospholipid syndrome (APS) affects coagulation and the brain by autoimmune mechanisms. The major antigen in APS is beta-2-glycoprotein I (β2-GPI) is known to complex with annexin A2 (ANXA2), and antibodies to ANXA2 have been described in APS. We measured these antibodies in mice with experimental APS (eAPS) induced by immunization with β2-GPI. Sera of these mice reacted significantly with recombinant ANXA2 by enzyme-linked immunosorbent assay (ELISA) and the eAPS mice had significantly high levels of immunoglobulin G (IgG) in the brain by immunoblot assays compared to adjuvant immunized controls. Immunoprecipitation performed by mixing eAPS brain tissue with protein-G beads resulted in identification of two autoantigens unique to the eAPS group, one of which was ANXA2. In order to study more directly and methodically the specific role of anti-ANXA2 antibodies in APS, we immunized mice with β2-GPI which contained no ANXA2 or with ANXA2 and measured antibodies to these proteins. Levels of antibodies to ANXA2 measured by ELISA were 0.72 ± 0.007 arbitrary units (a.u), 0.24 ± 0.03 and 0.02 ± 0.01 a.u for sera from ANXA2, β2-GPI and control mice, respectively (p < 0.0001 and p = 0.037 for the comparison of the ANXA2 and β2-GPI groups to the controls). Purified IgG from β2-GPI sera did not show cross-binding with ANXA2. Antibodies to β2-GPI and phospholipids were found in the β2-GPI immunized group only. The present study suggests an immune response to the β2-GPI–ANXA2 complex in eAPS and provides a novel ANXA2 immunization model which will serve to study the role of ANXA2 antibodies in of APS.


Antiphospholipid syndrome Autoimmune Autoantibodies Annexin Anticardiolipin Beta-2-glycoprotein 



We thank Ludmila Rachlin for technical assistance. This work was performed in partial fulfillment of the requirements for a Ph.D. degree by Ronen Weiss at the Sagol School of Neuroscience, Sackler Faculty of Medicine, Tel Aviv University, Israel.


  1. 1.
    Rand JH. Molecular pathogenesis of the antiphospholipid syndrome. Circ Res. 2002;90(1):29–37.CrossRefPubMedGoogle Scholar
  2. 2.
    Sherer Y, Blank M, Shoenfeld Y. Antiphospholipid syndrome (APS): where does it come from? Best Pract Res Clin Rheumatol. 2007;21(6):1071–8. doi: 10.1016/j.berh.2007.09.005.CrossRefPubMedGoogle Scholar
  3. 3.
    Shoenfeld Y, Twig G, Katz U, Sherer Y. Autoantibody explosion in antiphospholipid syndrome. J Autoimmun. 2008;30(1–2):74–83. doi: 10.1016/j.jaut.2007.11.011.CrossRefPubMedGoogle Scholar
  4. 4.
    Pierangeli SS, Barker JH, Stikovac D, Ackerman D, Anderson G, Barquinero J, et al. Effect of human IgG antiphospholipid antibodies on an in vivo thrombosis model in mice. Thromb Haemost. 1994;71(5):670–4.PubMedGoogle Scholar
  5. 5.
    Pierangeli SS, Harris EN. Antiphospholipid antibodies in an in vivo thrombosis model in mice. Lupus. 1994;3(4):247–51.CrossRefPubMedGoogle Scholar
  6. 6.
    Pierangeli SS, Liu XW, Barker JH, Anderson G, Harris EN. Induction of thrombosis in a mouse model by IgG, IgM and IgA immunoglobulins from patients with the antiphospholipid syndrome. Thromb Haemost. 1995;74(5):1361–7.PubMedGoogle Scholar
  7. 7.
    Blank M, Cohen J, Toder V, Shoenfeld Y. Induction of anti-phospholipid syndrome in naive mice with mouse lupus monoclonal and human polyclonal anti-cardiolipin antibodies. Proc Natl Acad Sci USA. 1991;88(8):3069–73.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Katzav A, Ben-Ziv T, Blank M, Pick CG, Shoenfeld Y, Chapman J. Antibody-specific behavioral effects: intracerebroventricular injection of antiphospholipid antibodies induces hyperactive behavior while anti-ribosomal-P antibodies induces depression and smell deficits in mice. J Neuroimmunol. 2014;272(1–2):10–5. doi: 10.1016/j.jneuroim.2014.04.003.CrossRefPubMedGoogle Scholar
  9. 9.
    Menachem A, Chapman J, Katzav A. Hyperactivity induced by antiphospholipid syndrome serum. Ann N Y Acad Sci. 2009;1173:422–6. doi: 10.1111/j.1749-6632.2009.04876.x.CrossRefPubMedGoogle Scholar
  10. 10.
    Shoenfeld Y, Nahum A, Korczyn AD, Dano M, Rabinowitz R, Beilin O, et al. Neuronal-binding antibodies from patients with antiphospholipid syndrome induce cognitive deficits following intrathecal passive transfer. Lupus. 2003;12(6):436–42.CrossRefPubMedGoogle Scholar
  11. 11.
    Blank M, Faden D, Tincani A, Kopolovic J, Goldberg I, Gilburd B, et al. Immunization with anticardiolipin cofactor (beta-2-glycoprotein I) induces experimental antiphospholipid syndrome in naive mice. J Autoimmun. 1994;7(4):441–55. doi: 10.1006/jaut.1994.1032.CrossRefPubMedGoogle Scholar
  12. 12.
    Katzav A, Litvinjuk Y, Pick CG, Blank M, Shoenfeld Y, Sirota P, et al. Genetic and immunological factors interact in a mouse model of CNS antiphospholipid syndrome. Behav Brain Res. 2006;169(2):289–93. doi: 10.1016/j.bbr.2006.01.015.CrossRefPubMedGoogle Scholar
  13. 13.
    Shrot S, Katzav A, Korczyn AD, Litvinju Y, Hershenson R, Pick CG, et al. Behavioral and cognitive deficits occur only after prolonged exposure of mice to antiphospholipid antibodies. Lupus. 2002;11(11):736–43.CrossRefPubMedGoogle Scholar
  14. 14.
    Chapman J, Rand JH, Brey RL, Levine SR, Blatt I, Khamashta MA, et al. Non-stroke neurological syndromes associated with antiphospholipid antibodies: evaluation of clinical and experimental studies. Lupus. 2003;12(7):514–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Yelnik CM, Kozora E, Appenzeller S. Non-stroke central neurologic manifestations in antiphospholipid syndrome. Curr Rheumatol Rep. 2016;18(2):11. doi: 10.1007/s11926-016-0568-x.CrossRefPubMedGoogle Scholar
  16. 16.
    Katzav A, Pick CG, Korczyn AD, Oest E, Blank M, Shoenfeld Y, et al. Hyperactivity in a mouse model of the antiphospholipid syndrome. Lupus. 2001;10(7):496–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Katzav A, Menachem A, Maggio N, Pollak L, Pick CG, Chapman J. IgG accumulates in inhibitory hippocampal neurons of experimental antiphospholipid syndrome. J Autoimmun. 2014;55:86–93. doi: 10.1016/j.jaut.2014.07.006.CrossRefPubMedGoogle Scholar
  18. 18.
    Frauenknecht K, Katzav A, Grimm C, Chapman J, Sommer CJ. Neurological impairment in experimental antiphospholipid syndrome is associated with increased ligand binding to hippocampal and cortical serotonergic 5-HT1A receptors. Immunobiology. 2013;218(4):517–26. doi: 10.1016/j.imbio.2012.06.011.CrossRefPubMedGoogle Scholar
  19. 19.
    Frauenknecht K, Katzav A, Grimm C, Chapman J, Sommer CJ. Altered receptor binding densities in experimental antiphospholipid syndrome despite only moderately enhanced autoantibody levels and absence of behavioral features. Immunobiology. 2014;219(5):341–9. doi: 10.1016/j.imbio.2013.11.006.CrossRefPubMedGoogle Scholar
  20. 20.
    Frauenknecht K, Katzav A, Weiss Lavi R, Sabag A, Otten S, Chapman J, et al. Mice with experimental antiphospholipid syndrome display hippocampal dysfunction and a reduction of dendritic complexity in hippocampal CA1 neurones. Neuropathol Appl Neurobiol. 2015;41(5):657–71. doi: 10.1111/nan.12180.CrossRefPubMedGoogle Scholar
  21. 21.
    Caronti B, Pittoni V, Palladini G, Valesini G. Anti-beta 2-glycoprotein I antibodies bind to central nervous system. J Neurol Sci. 1998;156(2):211–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Chapman J, Cohen-Armon M, Shoenfeld Y, Korczyn AD. Antiphospholipid antibodies permeabilize and depolarize brain synaptoneurosomes. Lupus. 1999;8(2):127–33.CrossRefPubMedGoogle Scholar
  23. 23.
    Ball-Rosen C, Primak-Rubinovicz H, Korczyn AD, Wang N, Farchi A, Shavit S, et al. Identification of histidine-rich glycoprotein, a potential autoantigen, in human and rat brain preparations. Ann N Y Acad Sci. 2007;1109:473–83. doi: 10.1196/annals.1398.053.CrossRefPubMedGoogle Scholar
  24. 24.
    Misasi R, Capozzi A, Longo A, Recalchi S, Lococo E, Alessandri C, et al. “New” antigenic targets and methodological approaches for refining laboratory diagnosis of antiphospholipid syndrome. J Immunol Res. 2015;2015:858542. doi: 10.1155/2015/858542.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ao W, Zheng H, Chen XW, Shen Y, Yang CD. Anti-annexin II antibody is associated with thrombosis and/or pregnancy morbidity in antiphospholipid syndrome and systemic lupus erythematosus with thrombosis. Rheumatol Int. 2011;31(7):865–9. doi: 10.1007/s00296-010-1379-4.CrossRefPubMedGoogle Scholar
  26. 26.
    Cesarman-Maus G, Rios-Luna NP, Deora AB, Huang B, Villa R, Cravioto Mdel C, et al. Autoantibodies against the fibrinolytic receptor, annexin 2, in antiphospholipid syndrome. Blood. 2006;107(11):4375–82. doi: 10.1182/blood-2005-07-2636.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Salle V, Maziere JC, Smail A, Cevallos R, Maziere C, Fuentes V, et al. Anti-annexin II antibodies in systemic autoimmune diseases and antiphospholipid syndrome. J Clin Immunol. 2008;28(4):291–7. doi: 10.1007/s10875-008-9188-1.CrossRefPubMedGoogle Scholar
  28. 28.
    Ogawa H, Zhao D, Dlott JS, Cameron GS, Yamazaki M, Hata T, et al. Elevated anti-annexin V antibody levels in antiphospholipid syndrome and their involvement in antiphospholipid antibody specificities. Am J Clin Pathol. 2000;114(4):619–28. doi: 10.1309/298H-NLBU-E47G-8PYL.CrossRefPubMedGoogle Scholar
  29. 29.
    Matsuda J, Saitoh N, Gohchi K, Gotoh M, Tsukamoto M. Anti-annexin V antibody in systemic lupus erythematosus patients with lupus anticoagulant and/or anticardiolipin antibody. Am J Hematol. 1994;47(1):56–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Zhou H, Wang H, Li N, Yu Y, Huang H, Yan Y, et al. Annexin A2 mediates anti-beta 2 GPI/beta 2 GPI-induced tissue factor expression on monocytes. Int J Mol Med. 2009;24(4):557–62.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang J, McCrae KR. Annexin A2 mediates endothelial cell activation by antiphospholipid/anti-beta2 glycoprotein I antibodies. Blood. 2005;105(5):1964–9. doi: 10.1182/blood-2004-05-1708.CrossRefPubMedGoogle Scholar
  32. 32.
    Romay-Penabad Z, Montiel-Manzano MG, Shilagard T, Papalardo E, Vargas G, Deora AB, et al. Annexin A2 is involved in antiphospholipid antibody-mediated pathogenic effects in vitro and in vivo. Blood. 2009;114(14):3074–83. doi: 10.1182/blood-2008-11-188698.CrossRefPubMedGoogle Scholar
  33. 33.
    Godier A, Hunt BJ. Plasminogen receptors and their role in the pathogenesis of inflammatory, autoimmune and malignant disease. J Thromb Haemost (JTH). 2013;11(1):26–34. doi: 10.1111/jth.12064.CrossRefGoogle Scholar
  34. 34.
    Eberhard DA, Brown MD, VandenBerg SR. Alterations of annexin expression in pathological neuronal and glial reactions. Immunohistochemical localization of annexins I, II (p36 and p11 subunits), IV, and VI in the human hippocampus. Am J Pathol. 1994;145(3):640–9.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Nichols CD, Sanders-Bush E. Molecular genetic responses to lysergic acid diethylamide include transcriptional activation of MAP kinase phosphatase-1, C/EBP-beta and ILAD-1, a novel gene with homology to arrestins. J Neurochem. 2004;90(3):576–84. doi: 10.1111/j.1471-4159.2004.02515.x.CrossRefPubMedGoogle Scholar
  36. 36.
    Zhao WQ, Lu B. Expression of annexin A2 in GABAergic interneurons in the normal rat brain. J Neurochem. 2007;100(5):1211–23. doi: 10.1111/j.1471-4159.2006.04311.x.CrossRefPubMedGoogle Scholar
  37. 37.
    Caronti B, Calderaro C, Alessandri C, Conti F, Tinghino R, Palladini G, et al. Beta2-glycoprotein I (beta2-GPI) mRNA is expressed by several cell types involved in anti-phospholipid syndrome-related tissue damage. Clin Exp Immunol. 1999;115(1):214–9.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sokolova E, Reiser G. Prothrombin/thrombin and the thrombin receptors PAR-1 and PAR-4 in the brain: localization, expression and participation in neurodegenerative diseases. Thromb Haemost. 2008;100(4):576–81.PubMedGoogle Scholar
  39. 39.
    Arai T, Miklossy J, Klegeris A, Guo JP, McGeer PL. Thrombin and prothrombin are expressed by neurons and glial cells and accumulate in neurofibrillary tangles in Alzheimer disease brain. J Neuropathol Exp Neurol. 2006;65(1):19–25.CrossRefPubMedGoogle Scholar
  40. 40.
    Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. doi: 10.1126/science.1260419.CrossRefPubMedGoogle Scholar
  41. 41.
    Roseman BJ, Bollen A, Hsu J, Lamborn K, Israel MA. Annexin II marks astrocytic brain tumors of high histologic grade. Oncol Res. 1994;6(12):561–7.PubMedGoogle Scholar
  42. 42.
    Svenningsson P, Kim Y, Warner-Schmidt J, Oh YS, Greengard P. p11 and its role in depression and therapeutic responses to antidepressants. Nat Rev Neurosci. 2013;14(10):673–80. doi: 10.1038/nrn3564.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Eriksson TM, Alvarsson A, Stan TL, Zhang X, Hascup KN, Hascup ER, et al. Bidirectional regulation of emotional memory by 5-HT1B receptors involves hippocampal p11. Mol Psychiatry. 2013;18(10):1096–105. doi: 10.1038/mp.2012.130.CrossRefPubMedGoogle Scholar
  44. 44.
    Gotow T, Sakata M, Funakoshi T, Uchiyama Y. Preferential localization of annexin V to the axon terminal. Neuroscience. 1996;75(2):507–21.CrossRefPubMedGoogle Scholar
  45. 45.
    Nordenman B, Bjork I. Studies on the binding of heparin to prothrombin and thrombin and the effect of heparin-binding on thrombin activity. Thromb Res. 1978;12(5):755–65.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • R. Weiss
    • 1
    • 2
  • A. Bitton
    • 3
  • L. Nahary
    • 3
  • M. T. Arango
    • 4
    • 5
  • I. Benhar
    • 3
  • M. Blank
    • 4
  • Y. Shoenfeld
    • 4
    • 6
  • J. Chapman
    • 1
    • 4
    • 7
    • 8
  1. 1.Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
  2. 2.Department of Physiology and Pharmacology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
  3. 3.Department of Molecular Microbiology and BiotechnologyTel-Aviv UniversityTel AvivIsrael
  4. 4.Zabludowicz Center for Autoimmune DiseasesSheba Medical CenterTel Hashomer, Ramat GanIsrael
  5. 5.Doctoral Program in Biomedical SciencesUniversidad del RosarioBogotáColombia
  6. 6.Incumbent of the Laura Schwarz-Kip Chair for Research of Autoimmune Diseases, Sackler Faculty of MedicineTel-Aviv UniversityRamat Aviv, Tel AvivIsrael
  7. 7.Incumbent of Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of MedicineTel Aviv UniversityRamat Aviv, Tel AvivIsrael
  8. 8.Department of Neurology, The Chaim Sheba Medical CenterSackler Faculty of Medicine, Tel Aviv UniversityTel HashomerIsrael

Personalised recommendations