Immunologic Research

, Volume 65, Issue 1, pp 197–206 | Cite as

Vitamin D supplementation effects on FoxP3 expression in T cells and FoxP3+/IL-17A ratio and clinical course in systemic lupus erythematosus patients: a study in a Portuguese cohort

  • António Marinho
  • Cláudia Carvalho
  • Daniela Boleixa
  • Andreia Bettencourt
  • Bárbara Leal
  • Judite Guimarães
  • Esmeralda Neves
  • José Carlos Oliveira
  • Isabel Almeida
  • Fátima Farinha
  • Paulo P. Costa
  • Carlos Vasconcelos
  • Berta M. Silva
Therapeutic Aspects in Autoimmunity

Abstract

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with multi-organ inflammation, linked to loss of immune tolerance to self-antigens and the production of a diversity of autoantibodies, with a negative impact on the patients’ quality of life. Regulatory T cells have been reported as deficient in number and function in SLE patients. However, some authors also described an enrichment of this cell type. The hypothesis that certain forms of autoimmunity may result from a conversion of Treg cells into a Th17 cell phenotype has been suggested by some studies. In fact, in SLE patients’ sera, the IL-17 levels were observed as abnormally high when compared with healthy individuals. Environmental factors, such as vitamin D, that is considered a potential anti-inflammatory agent, combined with genetic and hormonal characteristics have been associated with SLE phenotype and with disease progression. The aim of this study was to evaluate the effect of vitamin D supplementation on FoxP3 expression and IL-17A-producing T cells, through FoxP3+/IL-17A ratio. Additionally, disease evolution, serum vitamin D levels, serum autoantibodies levels and calcium metabolism (to assure safety) were also studied. We assessed 24 phenotypically well-characterized SLE patients. All patients were screened before vitamin D supplementation and 3 and 6 months after the beginning of this treatment. Peripheral blood lymphocyte’s subsets were analysed by flow cytometry. Serum 25(OH)D levels significantly increased under vitamin D supplementation (p = 0.001). The FoxP3+/IL-17A ratio in SLE patients after 6 months of vitamin D supplementation was higher than that in the baseline (p < 0.001). In conclusion, this study demonstrated that vitamin D supplementation provided favourable, immunological and clinical impact on SLE.

Keywords

SLE Vitamin D FoxP3 T cells IL-17A T cells 

References

  1. 1.
    Carvalho C, Marinho A, Leal B, Bettencourt A, Boleixa D, Almeida I et al. Association between vitamin D receptor (VDR) gene polymorphisms and systemic lupus erythematosus in Portuguese patients. Lupus. 2015;24:846–53.CrossRefPubMedGoogle Scholar
  2. 2.
    Lauwerys BR, Hachulla E, Spertini F, Lazaro E, Jorgensen C, Mariette X, et al. Down-regulation of interferon signature in systemic lupus erythematosus patients by active immunization with interferon alpha-kinoid. Arthritis Rheum. 2013;65:447–56.CrossRefPubMedGoogle Scholar
  3. 3.
    Lauwerys BR, Ducreux J, Houssiau FA. Type I interferon blockade in systemic lupus erythematosus: where do we stand? Rheumatology. 2014;53:1369–76.CrossRefPubMedGoogle Scholar
  4. 4.
    Jiang SE. TH17 cells in health and disease. 1st ed. New York: Springer; 2011.CrossRefGoogle Scholar
  5. 5.
    Lahita RG, Tsokos GC, Buyon JP, Koike T. Systemic lupus erythematosus. 5th ed. Cambridge: Academic Press, Elsevier Inc; 2011.Google Scholar
  6. 6.
    Mandal M, Tripathy R, Panda AK, Pattanaik SS, Dakua S, Pradhan AK, et al. Vitamin D levels in Indian systemic lupus erythematosus patients: association with disease activity index and interferon alpha. Arthritis Res Ther. 2014;16:R49.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Guerra SG, Vyse TJ, Graham DSC. The genetics of lupus: a functional perspective. Arthritis Res Ther. 2012;14:211.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mocanu V, Oboroceanu T, Zugun-Eloae F. Current status in vitamin D and regulatory T cells—immunological implications. Rev Med Chir Soc Med Nat Iasi. 2013;117:965–73.PubMedGoogle Scholar
  9. 9.
    Del Pozo-Balado MM, Leal M, Mendez-Lagares G, Pacheco YM. CD4(+)CD25(+/hi)CD127(lo) phenotype does not accurately identify regulatory T cells in all populations of HIV-infected persons. J Infect Dis. 2010;201:331–5.CrossRefGoogle Scholar
  10. 10.
    Smolders J, Thewissen M, Peelen E, Menheere P, Tervaert JW, Damoiseaux J, et al. Vitamin D status is positively correlated with regulatory T cell function in patients with multiple sclerosis. PLoS One. 2009;4:e6635.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Daniel C, von Boehmer H. Extrathymic generation of regulatory T cells—chances and challenges for prevention of autoimmune disease. Adv Immunol. 2011;112:177–213.CrossRefPubMedGoogle Scholar
  12. 12.
    Sawla P, Hossain A, Hahn BH, Singh RP. Regulatory T cells in systemic lupus erythematosus (SLE); role of peptide tolerance. Autoimmun Rev. 2012;11:611–4.CrossRefPubMedGoogle Scholar
  13. 13.
    Lin SC, Chen KH, Lin CH, Kuo CC, Ling QD, Chan CH. The quantitative analysis of peripheral blood FOXP3-expressing T cells in systemic lupus erythematosus and rheumatoid arthritis patients. Eur J Clin Invest. 2007;37:987–96.CrossRefPubMedGoogle Scholar
  14. 14.
    Suarez A, Lopez P, Gomez J, Gutierrez C. Enrichment of CD4+ CD25 high T cell population in patients with systemic lupus erythematosus treated with glucocorticoids. Ann Rheum Dis. 2006;65:1512–7.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bonelli M, Savitskaya A, Steiner CW, Rath E, Smolen JS, Scheinecker C. Phenotypic and functional analysis of CD4+ CD25− Foxp3+ T cells in patients with systemic lupus erythematosus. J Immunol. 2009;182:1689–95.CrossRefPubMedGoogle Scholar
  16. 16.
    Valencia X, Yarboro C, Illei G, Lipsky PE. Deficient CD4+ CD25 high T regulatory cell function in patients with active systemic lupus erythematosus. J Immunol. 2007;178:2579–88.CrossRefPubMedGoogle Scholar
  17. 17.
    Bansal AS, Henriquez F, Sumar N, Patel S. T helper cell subsets in arthritis and the benefits of immunomodulation by 1,25(OH)(2) vitamin D. Rheumatol Int. 2012;32:845–52.CrossRefPubMedGoogle Scholar
  18. 18.
    Eisenstein EM, Williams CB. The T(reg)/Th17 cell balance: a new paradigm for autoimmunity. Pediatr Res. 2009;65:26R–31R.CrossRefPubMedGoogle Scholar
  19. 19.
    Choi J, Kim ST, Craft J. The pathogenesis of systemic lupus erythematosus—an update. Curr Opin Immunol. 2012;24:651–7.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kunz M. Lupus erythematosus. Part I: epidemiology, genetics and immunology. JDDG. 2013;11:709–19.PubMedGoogle Scholar
  21. 21.
    Schneider L, Dos SA, Santos M, da Silva Chakr RM, Monticielo OA. Vitamin D and systemic lupus erythematosus: state of the art. Clin Rheumatol. 2014;33:1033–8.PubMedGoogle Scholar
  22. 22.
    Cutolo M. Vitamin D and autoimmune rheumatic diseases. Rheumatology. 2009;48:210–2.CrossRefPubMedGoogle Scholar
  23. 23.
    Hart PH, Gorman S. Exposure to UV wavelengths in sunlight suppresses immunity. To what extent is UV-induced Vitamin D3 the mediator responsible? Clin Biochem Rev. 2013;34:3–13.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Guillot X, Semerano L, Saidenberg-Kermanac’h N, Falgarone G, Boissier MC. Vitamin D and inflammation. Joint Bone Spine Rev Rhum. 2010;77:552–7.CrossRefGoogle Scholar
  25. 25.
    Antico A, Tampoia M, Tozzoli R, Bizzaro N. Can supplementation with vitamin D reduce the risk or modify the course of autoimmune diseases? A systematic review of the literature. Autoimmun Rev. 2012;12:127–36.CrossRefPubMedGoogle Scholar
  26. 26.
    Kamen D, Aranow C. Vitamin D in systemic lupus erythematosus. Curr Opin Rheumatol. 2008;20:532–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C. Vitamin D: modulator of the immune system. Curr Opin Pharmacol. 2010;10:482–96.CrossRefPubMedGoogle Scholar
  28. 28.
    Kang SW, Kim SH, Lee N, Lee WW, Hwang KA, Shin MS, et al. 1,25-Dihyroxyvitamin D3 promotes FOXP3 expression via binding to vitamin D response elements in its conserved noncoding sequence region. J Immunol. 2012;188:5276–82.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Astry B, Venkatesha SH, Moudgil KD. Involvement of the IL-23/IL-17 axis and the Th17/Treg balance in the pathogenesis and control of autoimmune arthritis. Cytokine. 2015;74:54–61.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hochberg MC. Updating the American college of rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40:1725.CrossRefPubMedGoogle Scholar
  31. 31.
    Petri M, Orbai AM, Alarcon GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012;64:2677–86.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gladman DD, Ibanez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000. J Rheumatol. 2002;29:288–91.PubMedGoogle Scholar
  33. 33.
    Gladman D, Ginzler E, Goldsmith C, Fortin P, Liang M, Urowitz M, et al. The development and initial validation of the Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index for systemic lupus erythematosus. Arthritis Rheum. 1996;39:363–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Buyon JP, Petri MA, Kim MY, Kalunian KC, Grossman J, Hahn BH, et al. The effect of combined estrogen and progesterone hormone replacement therapy on disease activity in systemic lupus erythematosus: a randomized trial. Ann Intern Med. 2005;142:953–62.CrossRefPubMedGoogle Scholar
  35. 35.
    Petri M, Buyon J, Kim M. Classification and definition of major flares in SLE clinical trials. Lupus. 1999;8:685–91.CrossRefPubMedGoogle Scholar
  36. 36.
    Petri M, Kim MY, Kalunian KC, Grossman J, Hahn BH, Sammaritano LR, et al. Combined oral contraceptives in women with systemic lupus erythematosus. N Engl J Med. 2005;353:2550–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Holick MF, Chen TC. Vitamin D deficiency: a worldwide problem with health consequences. Am J Clin Nutr. 2008;87:1080S–6S.PubMedGoogle Scholar
  38. 38.
    Arnson Y, Amital H, Shoenfeld Y. Vitamin D and autoimmunity: new aetiological and therapeutic considerations. Ann Rheum Dis. 2007;66:1137–42.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266–81.CrossRefPubMedGoogle Scholar
  40. 40.
    Kriegel MA, Manson JE, Costenbader KH. Does vitamin D affect risk of developing autoimmune disease? a systematic review. Semin Arthritis Rheum. 2011;40(512–31):e8.Google Scholar
  41. 41.
    Shoenfeld N, Amital H, Shoenfeld Y. The effect of melanism and vitamin D synthesis on the incidence of autoimmune disease. Nat Clin Pract Rheumatol. 2009;5:99–105.CrossRefPubMedGoogle Scholar
  42. 42.
    Mithal A, Wahl DA, Bonjour JP, Burckhardt P, Dawson-Hughes B, Eisman JA, et al. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int. 2009;20:1807–20.CrossRefPubMedGoogle Scholar
  43. 43.
    Royal W 3rd, Mia Y, Li H, Naunton K. Peripheral blood regulatory T cell measurements correlate with serum vitamin D levels in patients with multiple sclerosis. J Neuroimmunol. 2009;213:135–41.CrossRefPubMedGoogle Scholar
  44. 44.
    Ben-Zvi I, Aranow C, Mackay M, Stanevsky A, Kamen DL, Marinescu LM, et al. The impact of vitamin D on dendritic cell function in patients with systemic lupus erythematosus. PLoS One. 2010;5:e9193.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wahono CS, Rusmini H, Soelistyoningsih D, Hakim R, Handono K, Endharti AT, et al. Effects of 1,25(OH)2D3 in immune response regulation of systemic lupus erithematosus (SLE) patient with hypovitamin D. Int J Clin Exp Med. 2014;7:22–31.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Terrier B, Derian N, Schoindre Y, Chaara W, Geri G, Zahr N, et al. Restoration of regulatory and effector T cell balance and B cell homeostasis in systemic lupus erythematosus patients through vitamin D supplementation. Arthritis Res Ther. 2012;14:R221.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Miyara M, Amoura Z, Parizot C, Badoual C, Dorgham K, Trad S, et al. Global natural regulatory T cell depletion in active systemic lupus erythematosus. J Immunol. 2005;175:8392–400.CrossRefPubMedGoogle Scholar
  48. 48.
    Crispin JC, Tsokos GC. Interleukin-17-producing T cells in lupus. Curr Opin Rheumatol. 2010;22:499–503.CrossRefPubMedGoogle Scholar
  49. 49.
    Dolff S, Quandt D, Wilde B, Feldkamp T, Hua F, Cai X, et al. Increased expression of costimulatory markers CD134 and CD80 on interleukin-17 producing T cells in patients with systemic lupus erythematosus. Arthritis Res Ther. 2010;12:R150.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J, et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med. 2003;197:711–23.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Reimers LL, Crew KD, Bradshaw PT, Santella RM, Steck SE, Sirosh I, et al. Vitamin D-related gene polymorphisms, plasma 25-hydroxyvitamin D, and breast cancer risk. CCC. 2015;26:187–203.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • António Marinho
    • 1
    • 2
  • Cláudia Carvalho
    • 1
  • Daniela Boleixa
    • 1
  • Andreia Bettencourt
    • 1
  • Bárbara Leal
    • 1
  • Judite Guimarães
    • 1
    • 3
  • Esmeralda Neves
    • 3
  • José Carlos Oliveira
    • 4
  • Isabel Almeida
    • 1
    • 2
  • Fátima Farinha
    • 1
    • 2
  • Paulo P. Costa
    • 1
  • Carlos Vasconcelos
    • 1
    • 2
  • Berta M. Silva
    • 1
  1. 1.UMIB, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS)UPortoPortoPortugal
  2. 2.Unidade Imunologia Clínica, Centro Hospitalar do PortoHospital Santo AntónioPortoPortugal
  3. 3.Serviço de Imunologia, Centro Hospitalar do PortoHospital Santo AntónioPortoPortugal
  4. 4.Departamento de Patologia Clínica, Centro Hospitalar do PortoHospital Santo AntónioPortoPortugal

Personalised recommendations