Advertisement

Immunologic Research

, Volume 65, Issue 1, pp 37–45 | Cite as

Gene sharing between Epstein–Barr virus and human immune response genes

  • David H. Dreyfus
Environment and Autoimmunity

Abstract

Epstein–Barr virus (also termed HHV-4, EBV), a component of the human virome or metagenome, is associated as a co-factor in many common human autoimmune diseases through epidemiologic evidence. Numerous EBV genes are functional as well as structural homologues of important immune response genes. For example, EBV-encoded BCRF1 is a functional homologue of IL-10, a critical cytokine regulator of immune tolerance. BZLF-1, an EBV-encoded transcription factor, contains regions with functional homology to both AP-1 and NF-κB DNA binding immune response regulatory factors. The author proposes a paradigm of “gene sharing” between viral- and host-encoded proteins as extension of molecular mimicry that has been largely overlooked in animal models that consider only host genomic factors rather than viral pathogens and the metagenome. Gene sharing may trigger chaotic behavior in human autoimmune disease through unstable feedback loops and perturbations of immune tolerance.

Keywords

Virome Metagenome Cytokine Virokine Altered-self Microbiome 

References

  1. 1.
    Dreyfus DH. Autoimmune disease: a role for new anti-viral therapies? Autoimmun Rev. 2011;11:88–97.CrossRefPubMedGoogle Scholar
  2. 2.
    Dreyfus DH, Kelleher CA, Jones JF, Gelfand EW. Epstein–Barr virus infection of T cells: implications for altered T-lymphocyte activation, repertoire development and autoimmunity. Immunol Rev. 1996;152:89–110.CrossRefPubMedGoogle Scholar
  3. 3.
    Panoutsakopoulou V, Sanchirico ME, Huster KM, Jansson M, Granucci F, Shim DJ, Wucherpfennig KW, Cantor H. Analysis of the relationship between viral infection and autoimmune disease. Immunity. 2001;15:137–47.CrossRefPubMedGoogle Scholar
  4. 4.
    Poole BD, Templeton AK, Guthridge JM, Brown EJ, Harley JB, James JA. Aberrant Epstein–Barr viral infection in systemic lupus erythematosus. Autoimmun Rev. 2009;8:337–42.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rist MJ, Hibbert KM, Croft NP, Smith C, Neller MA, Burrows JM, Miles JJ, Purcell AW, Rossjohn J, Gras S, Burrows SR. T cell cross-reactivity between a highly immunogenic EBV epitope and a self-peptide naturally presented by HLA-B* 18:01+ cells. J Immunol. 2015;194:4668–75.CrossRefPubMedGoogle Scholar
  6. 6.
    Rose NR. Molecular mimicry and clonal deletion: a fresh look. J Theor Biol. 2015;375:71–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Wucherpfennig KW. Structural basis of molecular mimicry. J Autoimmun. 2001;16:293–302.CrossRefPubMedGoogle Scholar
  8. 8.
    Sicat J, Sutkowski N, Huber BT. Expression of human endogenous retrovirus HERV-K18 superantigen is elevated in juvenile rheumatoid arthritis. J Rheumatol. 2005;32:1821–31.PubMedGoogle Scholar
  9. 9.
    Sutkowski N, Chen G, Calderon G, Huber BT. Epstein–Barr virus latent membrane protein LMP-2A is sufficient for transactivation of the human endogenous retrovirus HERV-K18 superantigen. J Virol. 2004;78:7852–60.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dower SK. Cytokines, virokines and the evolution of immunity. Nat Immunol. 2000;1:367–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Ouyang P, Rakus K, van Beurden SJ, Westphal AH, Davison AJ, Gatherer D, Vanderplasschen AF. IL-10 encoded by viruses: a remarkable example of independent acquisition of a cellular gene by viruses and its subsequent evolution in the viral genome. J Gen Virol. 2014;95:245–62.CrossRefPubMedGoogle Scholar
  12. 12.
    Dreyfus DH, Liu Y, Ghoda LY, Chang JT. Analysis of an ankyrin-like region in Epstein–Barr virus encoded (EBV) BZLF-1 (ZEBRA) protein: implications for interactions with NF-κB and p53. Virol J. 2011;8:422.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dreyfus DH, Nagasawa M, Gelfand EW, Ghoda LY. Modulation of p53 activity by IκBα: evidence suggesting a common phylogeny between NF-κB and p53 transcription factors. BMC Immunol. 2005;6:12.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kivity S, Agmon-Levin N, Zandman-Goddard G, Chapman J, Shoenfeld Y. Neuropsychiatric lupus: a mosaic of clinical presentations. BMC Med. 2015;13:43.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Yaniv G, Twig G, Shor DB, Furer A, Sherer Y, Mozes O, Komisar O, Slonimsky E, Klang E, Lotan E, Welt M, Marai I, Shina A, Amital H, Shoenfeld Y. A volcanic explosion of autoantibodies in systemic lupus erythematosus: a diversity of 180 different antibodies found in SLE patients. Autoimmun Rev. 2015;14:75–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Ishida T, Kano Y, Mizukawa Y, Shiohara T. The dynamics of herpesvirus reactivations during and after severe drug eruptions: their relation to the clinical phenotype and therapeutic outcome. Allergy. 2014;69:798–805.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Shiohara T, Ushigome Y, Kano Y, Takahashi R. Crucial role of viral reactivation in the development of severe drug eruptions: a comprehensive review. Clin Rev Allergy Immunol. 2015;49:192–202.CrossRefPubMedGoogle Scholar
  18. 18.
    Takahashi R, Kano Y, Yamazaki Y, Kimishima M, Mizukawa Y, Shiohara T. Defective regulatory T cells in patients with severe drug eruptions: timing of the dysfunction is associated with the pathological phenotype and outcome. J Immunol. 2009;182:8071–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Tai AK, Lin M, Chang F, Chen G, Hsiao F, Sutkowski N, Huber BT. Murine Vβ3+ and Vβ7+ T cell subsets are specific targets for the HERV-K18 Env superantigen. J Immunol. 2006;177:3178–84.CrossRefPubMedGoogle Scholar
  20. 20.
    Tai AK, Luka J, Ablashi D, Huber BT. HHV-6A infection induces expression of HERV-K18-encoded superantigen. J Clin Virol. 2009;46:47–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Mingomataj EC, Bakiri AH. Regulator versus effector paradigm: interleukin-10 as indicator of the switching response. Clin Rev Allergy Immunol. 2016;50:97–113.CrossRefPubMedGoogle Scholar
  22. 22.
    Rist MJ, Neller MA, Burrows JM, Burrows SR. T cell epitope clustering in the highly immunogenic BZLF1 antigen of Epstein–Barr virus. J Virol. 2015;89:703–12.CrossRefPubMedGoogle Scholar
  23. 23.
    Rist MJ, Theodossis A, Croft NP, Neller MA, Welland A, Chen Z, Sullivan LC, Burrows JM, Miles JJ, Brennan RM, Gras S, Khanna R, Brooks AG, McCluskey J, Purcell AW, Rossjohn J, Burrows SR. HLA peptide length preferences control CD8+ T cell responses. J Immunol. 2013;191:561–71.CrossRefPubMedGoogle Scholar
  24. 24.
    Dreyfus DH. Role of T cells in EBV-infected systemic lupus erythematosus patients. J Immunol. 2005;175:3460 (author reply 3461).CrossRefPubMedGoogle Scholar
  25. 25.
    Dreyfus DH, Nagasawa M, Kelleher CA, Gelfand EW. Stable expression of Epstein–Barr virus BZLF-1-encoded ZEBRA protein activates p53-dependent transcription in human Jurkat T-lymphoblastoid cells. Blood. 2000;96:625–34.PubMedGoogle Scholar
  26. 26.
    Farina A, Cirone M, York M, Lenna S, Padilla C, McLaughlin S, Faggioni A, Lafyatis R, Trojanowska M, Farina GA. Epstein–Barr virus infection induces aberrant TLR activation pathway and fibroblast–myofibroblast conversion in scleroderma. J Investig Dermatol. 2014;134:954–64.CrossRefPubMedGoogle Scholar
  27. 27.
    Farina A, Farina GA. Fresh insights into disease etiology and the role of microbial pathogens. Curr Rheumatol Rep. 2015;18:1.CrossRefGoogle Scholar
  28. 28.
    Herkel J, Kam N, Erez N, Mimran A, Heifetz A, Eisenstein M, Rotter V, Cohen IR. Monoclonal antibody to a DNA-binding domain of p53 mimics charge structure of DNA: anti-idiotypes to the anti-p53 antibody are anti-DNA. Eur J Immunol. 2004;34:3623–32.CrossRefPubMedGoogle Scholar
  29. 29.
    Herkel J, Mimran A, Erez N, Kam N, Lohse AW, Marker-Hermann E, Rotter V, Cohen IR. Autoimmunity to the p53 protein is a feature of systemic lupus erythematosus (SLE) related to anti-DNA antibodies. J Autoimmun. 2001;17:63–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Herkel J, Modrow JP, Bamberger S, Kanzler S, Rotter V, Cohen IR, Lohse AW. Prevalence of autoantibodies to the p53 protein in autoimmune hepatitis. Autoimmunity. 2002;35:493–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Herkel J, Erez-Alon N, Mimran A, Wolkowicz R, Harmelin A, Ruiz P, Rotter V, Cohen IR. Systemic lupus erythematosus in mice, spontaneous and induced, is associated with autoimmunity to the C-terminal domain of p53 that recognizes damaged DNA. Eur J Immunol. 2000;30:977–84.CrossRefPubMedGoogle Scholar
  32. 32.
    Choi J, Goh G, Walradt T, Hong BS, Bunick CG, Chen K, Bjornson RD, Maman Y, Wang T, Tordoff J, Carlson K, Overton JD, Liu KJ, Lewis JM, Devine L, Barbarotta L, Foss FM, Subtil A, Vonderheid EC, Edelson RL, Schatz DG, Boggon TJ, Girardi M, Lifton RP. Genomic landscape of cutaneous T cell lymphoma. Nat Genet. 2015;47:1011–9.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bryant KF, Yan Z, Dreyfus DH, Knipe DM. Identification of a divalent metal cation binding site in herpes simplex virus 1 (HSV-1) ICP8 required for HSV replication. J Virol. 2012;86:6825–34.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Dreyfus DH. Immune system: success owed to a virus? Science. 2009;325:392–3.CrossRefPubMedGoogle Scholar
  35. 35.
    Dreyfus DH. Paleo-immunology: evidence consistent with insertion of a primordial herpes virus-like element in the origins of acquired immunity. PLoS One. 2009;4:e5778.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Niller HH, Minarovits J. Similarities between the Epstein–Barr virus (EBV) nuclear protein EBNA1 and the pioneer transcription factor FoxA: is EBNA1 a “Bookmarking” oncoprotein that alters the host cell epigenotype? Pathogens. 2012;1:37–51.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Niller HH, Tarnai Z, Decsi G, Zsedenyi A, Banati F, Minarovits J. Role of epigenetics in EBV regulation and pathogenesis. Future Microbiol. 2014;9:747–56.CrossRefPubMedGoogle Scholar
  38. 38.
    Niller HH, Salamon D, Ilg K, Koroknai A, Banati F, Bauml G, Rucker O, Schwarzmann F, Wolf H, Minarovits J. The in vivo binding site for oncoprotein c-Myc in the promoter for Epstein–Barr virus (EBV) encoding RNA (EBER) 1 suggests a specific role for EBV in lymphomagenesis. Med Sci Monit. 2003;9:HY1-9.PubMedGoogle Scholar
  39. 39.
    Niller HH, Salamon D, Rahmann S, Ilg K, Koroknai A, Banati F, Schwarzmann F, Wolf H, Minarovits J. A 30 kb region of the Epstein–Barr virus genome is colinear with the rearranged human immunoglobulin gene loci: implications for a “ping-pong evolution” model for persisting viruses and their hosts. A review. Acta Microbiol Immunol Hung. 2004;51:469–84.CrossRefPubMedGoogle Scholar
  40. 40.
    Pandya D, Mariani M, He S, Andreoli M, Spennato M, Dowell-Martino C, Fiedler P, Ferlini C. Epstein–Barr virus MicroRNA expression increases aggressiveness of solid malignancies. PLoS One. 2015;10:e0136058.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Dreyfus DH. Herpesviruses and the microbiome. J Allergy Clin Immunol. 2013;132:1278–86.CrossRefPubMedGoogle Scholar
  42. 42.
    Canny SP, Reese TA, Johnson LS, Zhang X, Kambal A, Duan E, Liu CY, Virgin HW. Pervasive transcription of a herpesvirus genome generates functionally important RNAs. MBio. 2014;5:e01013–33.CrossRefGoogle Scholar
  43. 43.
    MacDuff DA, Reese TA, Kimmey JM, Weiss LA, Song C, Zhang X, Kambal A, Duan E, Carrero JA, Boisson B, Laplantine E, Israel A, Picard C, Colonna M, Edelson BT, Sibley LD, Stallings CL, Casanova JL, Iwai K, Virgin HW. Phenotypic complementation of genetic immunodeficiency by chronic herpesvirus infection. Elife. 2015;4:04494.CrossRefGoogle Scholar
  44. 44.
    Park S, Buck MD, Desai C, Zhang X, Loginicheva E, Martinez J, Freeman ML, Saitoh T, Akira S, Guan JL, He YW, Blackman MA, Handley SA, Levine B, Green DR, Reese TA, Artyomov MN, Virgin HW. Autophagy genes enhance murine gammaherpesvirus 68 reactivation from latency by preventing virus-induced systemic inflammation. Cell Host Microbe. 2016;19:91–101.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Pfeiffer JK, Virgin HW. Viral immunity. Transkingdom control of viral infection and immunity in the mammalian intestine. Science. 2016;351.Google Scholar
  46. 46.
    Bernardes AT, dos Santos RM. Immune network at the edge of chaos. J Theor Biol. 1997;186:173–87.CrossRefPubMedGoogle Scholar
  47. 47.
    Kerr RA. Does Chaos Permeate the Solar System?: As faster computers allow celestial mechanicians longer looks at the behavior of the planets, chaos is turning up everywhere. Science. 1989;244:144–5.CrossRefPubMedGoogle Scholar
  48. 48.
    Kirkwood TB, Bangham CR. Cycles, chaos, and evolution in virus cultures: a model of defective interfering particles. Proc Natl Acad Sci USA. 1994;91:8685–9.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Malhotra R, Holman M, Ito T. Chaos and stability of the solar system. Proc Natl Acad Sci USA. 2001;98:12342–3.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Yale School of MedicineNew HavenUSA

Personalised recommendations