Skip to main content

Advertisement

Log in

Participation of T cell immunoglobulin and mucin domain-3 (TIM-3) and its ligand (galectin-9) in the pathogenesis of active generalized vitiligo

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Vitiligo is a depigmentary disease where melanocytes of the basal layer of epidermis are selectively destroyed by immune-cell-mediated cytotoxicity. The T cell immunoglobulin- and mucin-domain-containing molecules (TIMs) are involved in immune regulation, and their participation is not known in vitiligo. The present study revealed significant increase in the percentage of CD3+CD4+TIM3+ T cells (P < 0.05) in peripheral blood and was positively correlated with percentage body surface area involvement in aGV group. Further, increased expression of TIM-3 and its ligand galectin-9 (Gal-9) mRNA was found in peripheral blood and lesional/perilesional skin of active generalized vitiligo (aGV) compared with controls. Characteristic migration pattern of TIM-3-positive immune cells in lesional (near/in the epidermis) and perilesional (towards epidermis) skin section suggested that TIM-3+ immune cells may be involved in melanocyte destruction. Further, investigation is required to understand the role of TIM-3/Gal-9 signalling pathways in aGV and it can be targeted in the management of vitiligo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ongenae K, Van Geel N, Naeyaert JM. Evidence for an autoimmune pathogenesis of vitiligo. Pigment Cell Res. 2007;16(2):90–100.

    Article  Google Scholar 

  2. Grimes PE, Ghoneum M, Stockton T, Payne C, Kelly AP, Alfred L. T cell profiles in vitiligo. J Am Acad Dermatol. 1986;14:196–201.

    Article  CAS  PubMed  Google Scholar 

  3. Halder RM, Walters CS, Johnson BA, Chakrabarti SG, Kenney JA Jr. Aberrations in T lymphocytes and natural killer cells in vitiligo: a flow cytometric study. J Am Acad Dermatol. 1986;14:733–7.

    Article  CAS  PubMed  Google Scholar 

  4. Antelo DP, Filgueira AL, Cunha JM. Reduction of skin-homing cytotoxic T cells (CD8+-CLA+) in patients with vitiligo. Photodermatol Photoimmunol Photomed. 2011;27(1):40–4.

    Article  CAS  PubMed  Google Scholar 

  5. Kim JY, Do JE, Ahn KJ, Noh S, Jee HJ, Oh SH. Detection of melanocyte autoantigens reacting with autoantibodies in vitiligo patients by proteomics. J Dermatol Sci. 2011;62(3):202–4.

    Article  CAS  PubMed  Google Scholar 

  6. Kemp EH, Emhemad S, Akhtar S, Watson PF, Gawkrodger DJ, Weetman AP. Autoantibodies against tyrosine hydroxylase in patients with non-segmental (generalised) vitiligo. Exp Dermatol. 2011;20(1):35–40.

    Article  CAS  PubMed  Google Scholar 

  7. Waterman EA, Gawkrodger DJ, Watson PF, Weetman AP, Kemp EH. Autoantigens in vitiligo identified by the serological selection of a phage-displayed melanocyte cDNA expression library. J Invest Dermatol. 2010;130(1):230–40.

    Article  CAS  PubMed  Google Scholar 

  8. Wang CQ, Cruz-Inigo AE, Fuentes-Duculan J, Moussai D, Gulati N, Sullivan-Whalen M, et al. Th17 cells and activated dendritic cells are increased in vitiligo lesions. PLoS ONE. 2011;6(4):e18907.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Esmaeili B, Rezaee SA, Layegh P, Tavakkol AJ, Dye P, Ghayoor KE, MarfatiaYS Begum R, et al. Expression of IL-17 and COX2 gene in peripheral blood leukocytes of vitiligo patients. Iran J Allergy Asthma Immunol. 2011;10(2):81–9.

    CAS  PubMed  Google Scholar 

  10. Bassiouny DA, Shaker O. Role of interleukin-17 in the pathogenesis of vitiligo. Clin Exp Dermatol. 2011;36(3):292–7.

    Article  CAS  PubMed  Google Scholar 

  11. Dwivedi M, Laddha NC, Arora P, Marfatia YS, Begum R. Decreased regulatory T cells and CD4(+)/CD8(+) ratio correlate with disease onset and progression in patients with generalized vitiligo. Pigment Cell Melanoma Res. 2013;26(4):586–91.

    Article  CAS  PubMed  Google Scholar 

  12. Ben AM, Zaraa I, Rekik R, Elbeldi-Ferchiou A, Kourda N, Belhadj HN, et al. Functional defects of peripheral regulatory T lymphocytes in patients with progressive vitiligo. Pigment Cell Melanoma Res. 2012;25(1):99–109.

    Article  Google Scholar 

  13. Lili Y, Yi W, Ji Y, Yue S, Weimin S, Ming L. Global activation of CD8+ cytotoxic T lymphocytes correlates with an impairment in regulatory T cells in patients with generalized vitiligo. PLoS ONE. 2012;7(5):e37513.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Klarquist J, Denman CJ, Hernandez C, Wainwright DA, Strickland FM, Overbeck A, et al. Reduced skin homing by functional Treg in vitiligo. Pigment Cell Melanoma Res. 2010;23(2):276–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Tembhre MK, Sharma VK, Sharma A, Chattopadhyay P, Gupta S. T helper and regulatory T cell cytokine profile in active, stable and narrow band ultraviolet B treated generalized vitiligo. Clin Chim Acta. 2013;424:27–32.

    Article  CAS  PubMed  Google Scholar 

  16. Kuchroo VK, Umetsu DT, DeKruyff RH, Freeman GJ. The TIM gene family: emerging roles in immunity and disease. Nat Rev Immunol. 2003;3:454–62.

    Article  CAS  PubMed  Google Scholar 

  17. Santiago C, Ballesteros A, Tami C, Martínez-Muñoz L, Kaplan GG, Casasnovas JM. Structures of T cell immunoglobulin mucin receptors 1 and 2 reveal mechanisms for regulation of immune responses by the TIM receptor family. Immunity. 2007;26:299–310.

    Article  CAS  PubMed  Google Scholar 

  18. Khademi M, Illes Z, Gielen AW, Marta M, et al. T cell Ig- and mucin domain-containing molecule-3 (TIM-3) and TIM-1 molecules are differentially expressed on human Th1 and Th2 cells and in cerebrospinal fluid-derived mononuclear cells in multiple sclerosis. J Immunol. 2004;172:7169–76.

    Article  CAS  PubMed  Google Scholar 

  19. Kuchroo VK, Dardalhon V, Xiao S, Anderson AC. New roles for TIM family members in immune regulation. Nat Rev Immunol. 2008;8:577–80.

    Article  CAS  PubMed  Google Scholar 

  20. Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T, et al. Th1-specific cell surface protein TIM-3 regulates macrophage activation and severity of an autoimmune disease. Nature. 2002;415:536–41.

    Article  CAS  PubMed  Google Scholar 

  21. Mariat C, Sanchez-Fueyo A, Alexopoulos SP, Kenny J, Strom TB, Zheng XX. Regulation of T cell dependent immune responses by TIM family members. Philos Trans R Soc Lond B Biol Sci. 2005;360:1681–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL, et al. Kidney injury molecule-1 (KIM-1) a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain is up-regulated in renal cells after injury. J Biol Chem. 1998;273:4135–42.

    Article  CAS  PubMed  Google Scholar 

  23. Feigelstock D, Thompson P, Mattoo P, Zhang Y, Kaplan GG. The human homolog of HAVcr-1 codes for a hepatitis A virus cellular receptor. J Virol. 1998;72:6621–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Kaplan G, Totsuka A, Thompson P, Akatsuka T, Moritsugu Y, Feinstone SM. Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus. EMBO J. 1996;15:4282–96.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Umetsu SE, Lee WL, McIntire JJ, Downey L, Sanjanwala B, Akbari O, et al. TIM-1 induces T cell activation and inhibits the development of peripheral tolerance. Nat Immunol. 2005;6:447–54.

    Article  CAS  PubMed  Google Scholar 

  26. Meyers JH, Chakravarti S, Schlesinger D, Illes Z, Waldner H, Umetsu SE, et al. TIM-4 is the ligand for TIM-1, and the TIM-1–TIM-4 interaction regulates T cell proliferation. Nat Immunol. 2005;6:455–64.

    Article  CAS  PubMed  Google Scholar 

  27. Sanchez-Fueyo A, Tian J, Picarella D, Domenig C, Zheng XX, Sabatos CA, et al. TIM-3 inhibits T helper type 1-mediated auto- and alloimmune responses and promotes immunological tolerance. Nat Immunol. 2003;4:1093–101.

    Article  CAS  PubMed  Google Scholar 

  28. Anderson AC, Anderson DE. TIM-3 in autoimmunity. Curr Opin Immunol. 2006;18:665–9.

    Article  CAS  PubMed  Google Scholar 

  29. Pan HF, Zhang N, Li WX, Tao JH, Ye DQ. TIM-3 as a new therapeutic target in systemic lupus erythematosus. Mol Biol Rep. 2010;37(1):395–8.

    Article  CAS  PubMed  Google Scholar 

  30. Kanzaki M, Wada J, Sugiyama K, Nakatsuka A, Teshigawara S, Murakami K, et al. Galectin-9 and T cell immunoglobulin mucin-3 pathway is a therapeutic target for type 1 diabetes. Endocrinology. 2012;153(2):612–20.

    Article  CAS  PubMed  Google Scholar 

  31. McIntire JJ, Umetsu SE, Akbari O, Potter M, Kuchroo VK, Barsh GS, et al. Identification of Tapr (an airway hyper reactivity regulatory locus) and the linked TIM gene family. Nat Immunol. 2001;2:1109–16.

    Article  CAS  PubMed  Google Scholar 

  32. Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, et al. The TIM-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol. 2005;6(12):1245–52.

    Article  CAS  PubMed  Google Scholar 

  33. Wada J, Kanwar YS. Identification and characterization of galectin-9, a novel beta-galactoside-binding mammalian lectin. J Biol Chem. 1997;272:6078–86.

    Article  CAS  PubMed  Google Scholar 

  34. Imaizumi T, Kumagai M, Sasaki N, Kurotaki H, Mori F, Seki M, et al. Interferon-gamma stimulates the expression of galectin-9 in cultured human endothelial cells. J Leukoc Biol. 2002;72:486–91.

    CAS  PubMed  Google Scholar 

  35. Sabatos CA, Chakravarti S, Cha E. Interaction of TIM-3 and TIM-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance. Nat Immunol. 2003;4(11):1102–10.

    Article  CAS  PubMed  Google Scholar 

  36. Hastings WD, Anderson DE, Kassam N, Koguchi K, Greenfield EA, Kent SC, et al. TIM-3 is expressed on Activated Human CD4+ T Cells and Regulates Th1 and Th17 cytokines. Eur J Immunol. 2009;39(9):2492–501.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Gupta S, Thornley TB, Gao W, Larocca R, Turka LA, Kuchroo VK, et al. Allograft rejection is restrained by short-lived TIM-3+ PD-1+ Foxp3+ Tregs. J Clin Invest. 2012;122(7):2395–404.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Wang F, Wan L, Zhang C, Zheng X, Li J, Chen ZK. TIM-3-Galectin-9 pathway involves the suppression induced by CD4+ CD25+ regulatory T cells. Immunobiology. 2009;214(5):342–9.

    Article  CAS  PubMed  Google Scholar 

  39. Boenisch O, D’Addio F, Watanabe T, Elyaman W, Magee CN, Yeung MY, et al. TIM-3: a novel regulatory molecule of alloimmune activation. J Immunol. 2010;185(10):5806–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Anderson AC, Anderson DE, Bregoli L, Hastings WD, Kassam N, Lei C, et al. Promotion of tissue inflammation by the immune receptor TIM-3 expressed on innate immune cells. Science. 2007;318:1141–3.

    Article  CAS  PubMed  Google Scholar 

  41. Frisancho-Kiss S, Nyland JF, Davis SE, Barrett MA, Gatewood SJ, Njoku DB, et al. Cutting edge: T cell Ig mucin-3 reduces inflammatory heart disease by increasing CTLA-4 during innate immunity. J Immunol. 2006;176:6411–5.

    Article  CAS  PubMed  Google Scholar 

  42. Oikawa T, Kamimura Y, Akiba H, Yagita H, Okumura K, Takahashi H, et al. Preferential involvement of TIM-3 in the regulation of hepatic CD8+ T cells in murine acute graft-versus-host disease. J Immunol. 2006;177:4281–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was supported by the Department of Biotechnology (DBT), Indian Council of Medical Research (ICMR), New Delhi. We extend our sincere thanks to our laboratory research staff Mrs. Rama Lal, Mr. Pradeep Singh and Mr. Kripacharya for their kind co-operation and support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Kumar Sharma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12026_2015_8632_MOESM1_ESM.jpg

Schematic representation of the gating strategies used to characterize the TIM-1 and TIM-3 expressing T cell subsets. TIM = T cell immunoglobulin and mucin domain, PHA = Phytohemagglutinin

12026_2015_8632_MOESM2_ESM.jpg

Comparison of transcript levels of TIM-3, Gal-9, TIM-1, IFN-γ and IL-4 in non-lesional (n = 15) and normal skin (n = 10). The Mann–Whitney U test was performed, and difference was significant at level of P < 0.05. The aGV (n = 15) having maximum body surface area involvement (mean ± SD = 10.93 ± 8.86) was screened from the total (n = 50) aGV patients studied. The mean ± SD of the total duration was 4.67 ± 1.92. SD = standard deviation, TIM = T cell immunoglobulin and mucin domain, Gal-9 = galectin-9, IL = interleukin, IFN = interferon and aGV = active generalized vitiligo

Supplementary material 3 (DOCX 11 kb)

Supplementary material 4 (DOCX 12 kb)

Supplementary material 5 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tembhre, M.K., Parihar, A.S., Sharma, A. et al. Participation of T cell immunoglobulin and mucin domain-3 (TIM-3) and its ligand (galectin-9) in the pathogenesis of active generalized vitiligo. Immunol Res 62, 23–34 (2015). https://doi.org/10.1007/s12026-015-8632-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8632-6

Keywords

Navigation