Skip to main content

Advertisement

Log in

Keratinocytes produce IL-6 in response to desmoglein 1 cleavage by Staphylococcus aureus exfoliative toxin A

  • Immunology & Microbiology in Miami
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Many skin infections are caused by Staphylococcus aureus, a bacterial pathogen that produces virulence factors associated with these conditions such as exfoliative toxins A and B (ETA, ETB) and the leukotoxin Panton–Valentine leukocidin (PVL). Herein, we examine the potential of skin-infecting S. aureus to produce virulence factors and their impact on the local immune response. Toxin gene profiles were generated from 188 S. aureus isolated as single infecting organisms from skin lesions and demonstrated a higher potential to express ETA, ETB, and PVL than community isolates (p < 0.001). Within the study isolate group, the prevalence of genes encoding PVL was higher among methicillin-resistant S. aureus (MRSA; n = 49), while genes encoding ETs were more prevalent in methicillin-susceptible S. aureus (MSSA; n = 139). When lesion-associated white blood cell (WBC) counts were dichotomized into high- or low-WBC-count-associated bacteria, the gene for ETA was found to be associated with a low WBC count among MSSA (p = 0.001). The ETA-induced mouse model of staphylococcal scalded skin syndrome was used to investigate the link between ETA and cytokine production. Elevated IL-6 levels in the serum and increased expression of IL-6 mRNA in the skin were detected in response to ETA exposure. These findings were recapitulated in vitro using primary human keratinocytes. Thus, S. aureus may influence the local immune response via ETA cleavage of desmoglein 1 and the induction of cutaneous IL-6 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Klevens RM, Edwards JR, Richards CL Jr, Horan TC, Gaynes RP, Pollock DA, et al. Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep. 2007;122(2):160–6.

    PubMed Central  PubMed  Google Scholar 

  2. Klevens RM, Morrison MA, Fridkin SK, Reingold A, Petit S, Gershman K, et al. Community-associated methicillin-resistant Staphylococcus aureus and healthcare risk factors. Emerg Infect Dis. 2006;12(12):1991–3. doi:10.3201/eid1212.060505.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA. 2007;298(15):1763–71. doi:10.1001/jama.298.15.1763.

    Article  CAS  PubMed  Google Scholar 

  4. Iwatsuki K, Yamasaki O, Morizane S, Oono T. Staphylococcal cutaneous infections: invasion, evasion and aggression. J Dermatol Sci. 2006;42(3):203–14. doi:10.1016/j.jdermsci.2006.03.011.

    Article  CAS  PubMed  Google Scholar 

  5. Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998;339(8):520–32. doi:10.1056/NEJM199808203390806.

    Article  CAS  PubMed  Google Scholar 

  6. Moran GJ, Krishnadasan A, Gorwitz RJ, Fosheim GE, McDougal LK, Carey RB, et al. Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med. 2006;355(7):666–74. doi:10.1056/NEJMoa055356.

    Article  CAS  PubMed  Google Scholar 

  7. Diep BA, Carleton HA, Chang RF, Sensabaugh GF, Perdreau-Remington F. Roles of 34 virulence genes in the evolution of hospital- and community-associated strains of methicillin-resistant Staphylococcus aureus. J Infect Dis. 2006;193(11):1495–503. doi:10.1086/503777.

    Article  CAS  PubMed  Google Scholar 

  8. Foster TJ. Immune evasion by staphylococci. Nat Rev Microbiol. 2005;3(12):948–58. doi:10.1038/nrmicro1289.

    Article  CAS  PubMed  Google Scholar 

  9. Couppie P, Cribier B, Prevost G. Leukocidin from Staphylococcus aureus and cutaneous infections: an epidemiologic study. Arch Dermatol. 1994;130(9):1208–9.

    Article  CAS  PubMed  Google Scholar 

  10. Lina G, Piemont Y, Godail-Gamot F, Bes M, Peter MO, Gauduchon V, et al. Involvement of Panton–Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis. 1999;29(5):1128–32. doi:10.1086/313461.

    Article  CAS  PubMed  Google Scholar 

  11. Yamasaki O, Kaneko J, Morizane S, Akiyama H, Arata J, Narita S, et al. The association between Staphylococcus aureus strains carrying Panton–Valentine leukocidin genes and the development of deep-seated follicular infection. Clin Infect Dis. 2005;40(3):381–5. doi:10.1086/427290.

    Article  PubMed  Google Scholar 

  12. Labandeira-Rey M, Couzon F, Boisset S, Brown EL, Bes M, Benito Y, et al. Staphylococcus aureus Panton–Valentine leukocidin causes necrotizing pneumonia. Science. 2007;315(5815):1130–3. doi:10.1126/science.1137165.

    Article  CAS  PubMed  Google Scholar 

  13. Kawabata A, Ichiyama S, Iinuma Y, Hasegawa Y, Ohta M, Shimokata K. Exfoliative toxin detection using reversed passive latex agglutination: clinical and epidemiologic applications. J Clin Microbiol. 1997;35(8):1984–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Amagai M, Matsuyoshi N, Wang ZH, Andl C, Stanley JR. Toxin in bullous impetigo and staphylococcal scalded-skin syndrome targets desmoglein 1. Nat Med. 2000;6(11):1275–7. doi:10.1038/81385.

    Article  CAS  PubMed  Google Scholar 

  15. Harmon RM, Simpson CL, Johnson JL, Koetsier JL, Dubash AD, Najor NA, et al. Desmoglein-1/Erbin interaction suppresses ERK activation to support epidermal differentiation. J Clin Invest. 2013;123(4):1556–70. doi:10.1172/JCI65220.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Plano LR, Adkins B, Woischnik M, Ewing R, Collins CM. Toxin levels in serum correlate with the development of staphylococcal scalded skin syndrome in a murine model. Infect Immun. 2001;69(8):5193–7. doi:10.1128/IAI.69.8.5193-5197.2001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Mertz PM, Cardenas TC, Snyder RV, Kinney MA, Davis SC, Plano LR. Staphylococcus aureus virulence factors associated with infected skin lesions: influence on the local immune response. Arch Dermatol. 2007;143(10):1259–63. doi:10.1001/archderm.143.10.1259.

    Article  PubMed  Google Scholar 

  18. Oliveira DC, de Lencastre H. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2002;46(7):2155–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Shopsin B, Gomez M, Montgomery SO, Smith DH, Waddington M, Dodge DE, et al. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J Clin Microbiol. 1999;37(11):3556–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Harmsen D, Claus H, Witte W, Rothganger J, Turnwald D, Vogel U. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol. 2003;41(12):5442–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hower S, Phillips MC, Brodsky M, Dameron A, Tamargo MA, Salazar NC, et al. Clonally related methicillin-resistant Staphylococcus aureus isolated from short-finned pilot whales (Globicephala macrorhynchus), human volunteers, and a bayfront cetacean rehabilitation facility. Microb Ecol. 2013;65(4):1024–38. doi:10.1007/s00248-013-0178-3.

    Article  CAS  PubMed  Google Scholar 

  22. Plano LR, Shibata T, Garza AC, Kish J, Fleisher JM, Sinigalliano CD, et al. Human-associated methicillin-resistant Staphylococcus aureus from a subtropical recreational marine beach. Microb Ecol. 2013;65(4):1039–51. doi:10.1007/s00248-013-0216-1.

    Article  CAS  PubMed  Google Scholar 

  23. Plano LR, Gutman DM, Woischnik M, Collins CM. Recombinant Staphylococcus aureus exfoliative toxins are not bacterial superantigens. Infect Immun. 2000;68(5):3048–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Randolph RK, Simon M. Characterization of retinol metabolism in cultured human epidermal keratinocytes. J Biol Chem. 1993;268(13):9198–205.

    CAS  PubMed  Google Scholar 

  25. Jho SH, Vouthounis C, Lee B, Stojadinovic O, Im MJ, Brem H, et al. The book of opposites: the role of the nuclear receptor co-regulators in the suppression of epidermal genes by retinoic acid and thyroid hormone receptors. J Invest Dermatol. 2005;124(5):1034–43. doi:10.1111/j.0022-202X.2005.23691.x.

    Article  CAS  PubMed  Google Scholar 

  26. Pastar I, Stojadinovic O, Krzyzanowska A, Barrientos S, Stuelten C, Zimmerman K, et al. Attenuation of the transforming growth factor beta-signaling pathway in chronic venous ulcers. Mol Med. 2010;16(3–4):92–101. doi:10.2119/molmed.2009.00149.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):RESEARCH0034.

    Google Scholar 

  28. McDonald RR, Golding GR, Irvine J, Graham MR, Tyler S, Mulvey MR et al. Draft Genome Sequence of Methicillin-Susceptible Staphylococcus aureus Strain 06BA18369, a Pathogen Associated with Skin and Soft Tissue Infections in Northern Saskatchewan, Canada. Genome Announc. 2013;1(3). doi:10.1128/genomeA.00389-13.

  29. Ansel J, Perry P, Brown J, Damm D, Phan T, Hart C, et al. Cytokine modulation of keratinocyte cytokines. J Invest Dermatol. 1990;94(6 Suppl):101S–7S.

    Article  CAS  PubMed  Google Scholar 

  30. Plano LR. Staphylococcus aureus exfoliative toxins: how they cause disease. J Invest Dermatol. 2004;122(5):1070–7. doi:10.1111/j.1523-1747.2004.22144.x.

    Article  CAS  PubMed  Google Scholar 

  31. Olaru F, Jensen LE. Staphylococcus aureus stimulates neutrophil targeting chemokine expression in keratinocytes through an autocrine IL-1alpha signaling loop. J Invest Dermatol. 2010;130(7):1866–76. doi:10.1038/jid.2010.37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Xing Z, Gauldie J, Cox G, Baumann H, Jordana M, Lei XF, et al. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Invest. 1998;101(2):311–20. doi:10.1172/JCI1368.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Dube PH, Handley SA, Lewis J, Miller VL. Protective role of interleukin-6 during Yersinia enterocolitica infection is mediated through the modulation of inflammatory cytokines. Infect Immun. 2004;72(6):3561–70. doi:10.1128/IAI.72.6.3561-3570.2004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Goodman WA, Levine AD, Massari JV, Sugiyama H, McCormick TS, Cooper KD. IL-6 signaling in psoriasis prevents immune suppression by regulatory T cells. J Immunol. 2009;183(5):3170–6. doi:10.4049/jimmunol.0803721.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Hurst SM, Wilkinson TS, McLoughlin RM, Jones S, Horiuchi S, Yamamoto N, et al. Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity. 2001;14(6):705–14.

    Article  CAS  PubMed  Google Scholar 

  36. McLoughlin RM, Hurst SM, Nowell MA, Harris DA, Horiuchi S, Morgan LW, et al. Differential regulation of neutrophil-activating chemokines by IL-6 and its soluble receptor isoforms. J Immunol. 2004;172(9):5676–83.

    Article  CAS  PubMed  Google Scholar 

  37. Pastar I, Stojadinovic O, Tomic-Canic M. Role of keratinocytes in healing of chronic wounds. Surg Technol Int. 2008;17:105–12.

    PubMed  Google Scholar 

  38. Pajulo OT, Pulkki KJ, Alanen MS, Reunanen MS, Lertola KK, Mattila-Vuori AI, et al. Correlation between interleukin-6 and matrix metalloproteinase-9 in early wound healing in children. Wound Repair Regen. 1999;7(6):453–7.

    Article  CAS  PubMed  Google Scholar 

  39. Berkowitz P, Hu P, Liu Z, Diaz LA, Enghild JJ, Chua MP, et al. Desmosome signaling. Inhibition of p38MAPK prevents pemphigus vulgaris IgG-induced cytoskeleton reorganization. J Biol Chem. 2005;280(25):23778–84. doi:10.1074/jbc.M501365200.

    Article  CAS  PubMed  Google Scholar 

  40. Chernyavsky AI, Arredondo J, Kitajima Y, Sato-Nagai M, Grando SA. Desmoglein versus non-desmoglein signaling in pemphigus acantholysis: characterization of novel signaling pathways downstream of pemphigus vulgaris antigens. J Biol Chem. 2007;282(18):13804–12. doi:10.1074/jbc.M611365200.

    Article  CAS  PubMed  Google Scholar 

  41. Dusek RL, Godsel LM, Green KJ. Discriminating roles of desmosomal cadherins: beyond desmosomal adhesion. J Dermatol Sci. 2007;45(1):7–21. doi:10.1016/j.jdermsci.2006.10.006.

    Article  CAS  PubMed  Google Scholar 

  42. Dancer SJ, Noble WC. Nasal, axillary, and perineal carriage of Staphylococcus aureus among women: identification of strains producing epidermolytic toxin. J Clin Pathol. 1991;44(8):681–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Larsen HD, Aarestrup FM, Jensen NE. Geographical variation in the presence of genes encoding superantigenic exotoxins and beta-hemolysin among Staphylococcus aureus isolated from bovine mastitis in Europe and USA. Vet Microbiol. 2002;85(1):61–7.

    Article  CAS  PubMed  Google Scholar 

  44. Prevost G, Couppie P, Prevost P, Gayet S, Petiau P, Cribier B, et al. Epidemiological data on Staphylococcus aureus strains producing synergohymenotropic toxins. J Med Microbiol. 1995;42(4):237–45.

    Article  CAS  PubMed  Google Scholar 

  45. Holmes A, Ganner M, McGuane S, Pitt TL, Cookson BD, Kearns AM. Staphylococcus aureus isolates carrying Panton–Valentine leucocidin genes in England and Wales: frequency, characterization, and association with clinical disease. J Clin Microbiol. 2005;43(5):2384–90. doi:10.1128/JCM.43.5.2384-2390.2005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Kuehnert MJ, Kruszon-Moran D, Hill HA, McQuillan G, McAllister SK, Fosheim G, et al. Prevalence of Staphylococcus aureus nasal colonization in the United States, 2001–2002. J Infect Dis. 2006;193(2):172–9. doi:10.1086/499632.

    Article  CAS  PubMed  Google Scholar 

  47. Peacock SJ, Moore CE, Justice A, Kantzanou M, Story L, Mackie K, et al. Virulent combinations of adhesin and toxin genes in natural populations of Staphylococcus aureus. Infect Immun. 2002;70(9):4987–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Becker K, Friedrich AW, Lubritz G, Weilert M, Peters G, Von Eiff C. Prevalence of genes encoding pyrogenic toxin superantigens and exfoliative toxins among strains of Staphylococcus aureus isolated from blood and nasal specimens. J Clin Microbiol. 2003;41(4):1434–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. de Haas CJ, Veldkamp KE, Peschel A, Weerkamp F, Van Wamel WJ, Heezius EC, et al. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J Exp Med. 2004;199(5):687–95. doi:10.1084/jem.20031636.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Institutes of Health and the National Institute of Arthritis and Musculoskeletal and Skin Disease Grant R01-AR04882 and a grant from Teva Pharmaceutical Industries, Ltd to LRP and University of Miami SAC2013-60 to IP and SAC2013-19 to MT-C.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa R. W. Plano.

Additional information

Cleo E. Rolle and Juan Chen contributed equally to this work and should both be considered as first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolle, C.E., Chen, J., Pastar, I. et al. Keratinocytes produce IL-6 in response to desmoglein 1 cleavage by Staphylococcus aureus exfoliative toxin A. Immunol Res 57, 258–267 (2013). https://doi.org/10.1007/s12026-013-8467-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-013-8467-y

Keywords

Navigation