Skip to main content

Advertisement

Log in

Receptor signaling in immune cell development and function

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Immune cell development and function must be tightly regulated through cell surface receptors to ensure proper responses to pathogen and tolerance to self. In T cells, the signal from the T-cell receptor is essential for T-cell maturation, homeostasis, and activation. In mast cells, the high-affinity receptor for IgE transduces signal that promotes mast cell survival and induces mast cell activation. In dendritic cells and macrophages, the toll-like receptors recognize microbial pathogens and play critical roles for both innate and adaptive immunity against pathogens. Our research explores how signaling from these receptors is transduced and regulated to better understand these immune cells. Our recent studies have revealed diacylglycerol kinases and TSC1/2-mTOR as critical signaling molecules/regulators in T cells, mast cells, dendritic cells, and macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Krangel MS. Mechanics of T cell receptor gene rearrangement. Curr Opin Immunol. 2009;21:133–9.

    PubMed  CAS  Google Scholar 

  2. Haks MC, Oosterwegel MA, Blom B, Spits HM, Kruisbeek AM. Cell-fate decisions in early T cell development: regulation by cytokine receptors and the pre-TCR. Semin Immunol. 1999;11:23–37.

    PubMed  CAS  Google Scholar 

  3. Moroy T, Karsunky H. Regulation of pre-T-cell development. Cell Mol Life Sci. 2000;57:957–75.

    PubMed  CAS  Google Scholar 

  4. Takahama Y. Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol. 2006;6:127–35.

    PubMed  CAS  Google Scholar 

  5. Takahama Y, Nitta T, Mat Ripen A, Nitta S, Murata S, Tanaka K. Role of thymic cortex-specific self-peptides in positive selection of T cells. Semin Immunol. 2010;22:287–93.

    PubMed  CAS  Google Scholar 

  6. Hayes SM, Love PE. Strength of signal: a fundamental mechanism for cell fate specification. Immunol Rev. 2006;209:170–5.

    PubMed  Google Scholar 

  7. Surh CD, Sprent J. Homeostasis of naive and memory T cells. Immunity. 2008;29:848–62.

    PubMed  CAS  Google Scholar 

  8. Elder ME, et al. Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase. Science. 1994;264:1596–9.

    PubMed  CAS  Google Scholar 

  9. Bachmaier K, et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature. 2000;403:211–6.

    PubMed  CAS  Google Scholar 

  10. Zikherman J, et al. CD45-Csk phosphatase-kinase titration uncouples basal and inducible T cell receptor signaling during thymic development. Immunity. 2010;32:342–54.

    PubMed  CAS  Google Scholar 

  11. Guy CS, Vignali DA. Organization of proximal signal initiation at the TCR:CD3 complex. Immunol Rev. 2009;232:7–21.

    PubMed  CAS  Google Scholar 

  12. Wang H, et al. ZAP-70: an essential kinase in T-cell signaling. Cold Spring Harb Perspect Biol. 2010; 2:a002279.

    Google Scholar 

  13. Samelson LE. Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu Rev Immunol. 2002;20:371–94.

    PubMed  CAS  Google Scholar 

  14. Koretzky GA, Abtahian F, Silverman MA. SLP76 and SLP65: complex regulation of signalling in lymphocytes and beyond. Nat Rev Immunol. 2006;6:67–78.

    PubMed  CAS  Google Scholar 

  15. Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annu Rev Immunol. 2009;27:591–619.

    PubMed  CAS  Google Scholar 

  16. Imboden JB, Stobo JD. Transmembrane signalling by the T cell antigen receptor. Perturbation of the T3-antigen receptor complex generates inositol phosphates and releases calcium ions from intracellular stores. J Exp Med. 1985;161:446–56.

    PubMed  CAS  Google Scholar 

  17. Hogan PG, Lewis RS, Rao A. Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol. 2010;28:491–533.

    PubMed  CAS  Google Scholar 

  18. Zhong XP, Guo R, Zhou H, Liu C, Wan CK. Diacylglycerol kinases in immune cell function and self-tolerance. Immunol Rev. 2008;224:249–64.

    PubMed  CAS  Google Scholar 

  19. Merida I, Avila-Flores A, Merino E. Diacylglycerol kinases: at the hub of cell signalling. Biochem J. 2008;409:1–18.

    PubMed  CAS  Google Scholar 

  20. Topham MK, Epand RM. Mammalian diacylglycerol kinases: molecular interactions and biological functions of selected isoforms. Biochim Biophys Acta. 2009;1790:416–24.

    PubMed  CAS  Google Scholar 

  21. Isakov N, Altman A. Protein kinase C θ in T cell activation. Annu Rev Immunol. 2002;20:761–94.

    PubMed  CAS  Google Scholar 

  22. Lee KY, D’Acquisto F, Hayden MS, Shim JH, Ghosh S. PDK1 nucleates T cell receptor-induced signaling complex for NF-κB activation. Science. 2005;308:114–8.

    PubMed  CAS  Google Scholar 

  23. Vallabhapurapu S, Karin M. Regulation and function of NF-κB transcription factors in the immune system. Annu Rev Immunol. 2009;27:693–733.

    PubMed  CAS  Google Scholar 

  24. Roose JP, Mollenauer M, Ho M, Kurosaki T, Weiss A. Unusual interplay of two types of Ras activators, RasGRP and SOS, establishes sensitive and robust Ras activation in lymphocytes. Mol Cell Biol. 2007;27:2732–45.

    PubMed  CAS  Google Scholar 

  25. Roose JP, Mollenauer M, Gupta VA, Stone J, Weiss A. A diacylglycerol-protein kinase C-RasGRP1 pathway directs Ras activation upon antigen receptor stimulation of T cells. Mol Cell Biol. 2005;25:4426–41.

    PubMed  CAS  Google Scholar 

  26. Dower NA, et al. RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nat Immunol. 2000;1:317–21.

    PubMed  CAS  Google Scholar 

  27. English D, Cui Y, Caberlotto L. Messenger functions of phosphatidic acid. Chem Phys Lipids. 1996;80:117–32.

    PubMed  CAS  Google Scholar 

  28. Frank C, Keilhack H, Opitz F, Zschornig O, Bohmer FD. Binding of phosphatidic acid to the protein-tyrosine phosphatase SHP-1 as a basis for activity modulation. Biochemistry. 1999;38:11993–2002.

    PubMed  CAS  Google Scholar 

  29. Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science. 2001;294:1942–5.

    PubMed  CAS  Google Scholar 

  30. Grange M, et al. The cAMP-specific phosphodiesterase PDE4D3 is regulated by phosphatidic acid binding. Consequences for cAMP signaling pathway and characterization of a phosphatidic acid binding site. J Biol Chem. 2000;275:33379–87.

    PubMed  CAS  Google Scholar 

  31. Jones JA, Hannun YA. Tight binding inhibition of protein phosphatase-1 by phosphatidic acid. Specificity of inhibition by the phospholipid. J Biol Chem. 2002;277:15530–8.

    PubMed  CAS  Google Scholar 

  32. Luo B, Prescott SM, Topham MK. Diacylglycerol kinase ζ regulates phosphatidylinositol 4-phosphate 5-kinase I α by a novel mechanism. Cell Signal. 2004;16:891–7.

    PubMed  CAS  Google Scholar 

  33. Zhao C, Du G, Skowronek K, Frohman MA, Bar-Sagi D. Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Nat Cell Biol. 2007;9:706–12.

    PubMed  CAS  Google Scholar 

  34. Karathanassis D, et al. Binding of the PX domain of p47phox to phosphatidylinositol 3, 4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J. 2002;21:5057–68.

    PubMed  CAS  Google Scholar 

  35. Luo B, Regier DS, Prescott SM, Topham MK. Diacylglycerol kinases. Cell Signal. 2004;16:983–9.

    PubMed  CAS  Google Scholar 

  36. Sakane F, Imai S, Kai M, Yasuda S, Kanoh H. Diacylglycerol kinases: Why so many of them? Biochim Biophys Acta. 2007;1771:793–806.

    PubMed  CAS  Google Scholar 

  37. Tang W, Bunting M, Zimmerman GA, McIntyre TM, Prescott SM. Molecular cloning of a novel human diacylglycerol kinase highly selective for arachidonate-containing substrates. J Appl Biol Chem. 1996;271:10237–41.

    CAS  Google Scholar 

  38. Fu G, et al. Phospholipase C γ1 is essential for T cell development, activation, and tolerance. J Exp Med. 2010;207:309–18.

    PubMed  CAS  Google Scholar 

  39. Priatel JJ, et al. RasGRP1 regulates antigen-induced developmental programming by naive CD8 T cells. J Immunol. 2010;184:666–76.

    PubMed  CAS  Google Scholar 

  40. Long M, Park SG, Strickland I, Hayden MS, Ghosh S. Nuclear factor-kappaB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor. Immunity. 2009;31:921–31.

    PubMed  CAS  Google Scholar 

  41. Zhong XP, et al. Enhanced T cell responses due to diacylglycerol kinase ζ deficiency. Nat Immunol. 2003;4:882–90.

    PubMed  CAS  Google Scholar 

  42. Olenchock BA, et al. Disruption of diacylglycerol metabolism impairs the induction of T cell anergy. Nat Immunol. 2006;7:1174–81.

    PubMed  CAS  Google Scholar 

  43. Guo R, et al. Synergistic control of T cell development and tumor suppression by diacylglycerol kinase α and ζ. Proc Natl Acad Sci USA. 2008;105:11909–14.

    PubMed  CAS  Google Scholar 

  44. Schwartz RH. T cell anergy. Annu Rev Immunol. 2003;21:305–34.

    PubMed  CAS  Google Scholar 

  45. Flores I, Casaseca T, Martinez AC, Kanoh H, Merida I. Phosphatidic acid generation through interleukin 2 (IL-2)-induced alpha-diacylglycerol kinase activation is an essential step in IL-2-mediated lymphocyte proliferation. J Biol Chem. 1996;271:10334–40.

    PubMed  CAS  Google Scholar 

  46. Zhong XP, Hainey EA, Olenchock BA, Zhao H, Topham MK, Koretzky GA. Regulation of T cell receptor-induced activation of the Ras-ERK pathway by diacylglycerol kinase zeta. J Biol Chem. 2002;277:31089–98.

    PubMed  CAS  Google Scholar 

  47. Zha Y, et al. T cell anergy is reversed by active Ras and is regulated by diacylglycerol kinase-alpha. Nat Immunol. 2006;7:1166–73.

    PubMed  CAS  Google Scholar 

  48. Sanjuan MA, et al. T cell activation in vivo targets diacylglycerol kinase α to the membrane: a novel mechanism for Ras attenuation. J Immunol. 2003;170:2877–83.

    PubMed  CAS  Google Scholar 

  49. Green JM, Karpitskiy V, Kimzey SL, Shaw AS. Coordinate regulation of T cell activation by CD2 and CD28. J Immunol. 2000;164:3591–5.

    PubMed  CAS  Google Scholar 

  50. Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol. 1996;14:233–58.

    PubMed  CAS  Google Scholar 

  51. Jenkins MK, Pardoll DM, Mizuguchi J, Chused TM, Schwartz RH. Molecular events in the induction of a nonresponsive state in interleukin 2-producing helper T-lymphocyte clones. Proc Natl Acad Sci USA. 1987;84:5409–13.

    PubMed  CAS  Google Scholar 

  52. Quill H, Schwartz RH. Stimulation of normal inducer T cell clones with antigen presented by purified Ia molecules in planar lipid membranes: specific induction of a long-lived state of proliferative nonresponsiveness. J Immunol. 1987;138:3704–12.

    PubMed  CAS  Google Scholar 

  53. Boussiotis VA, Freeman GJ, Gray G, Gribben J, Nadler LM. B7 but not intercellular adhesion molecule-1 costimulation prevents the induction of human alloantigen-specific tolerance. J Exp Med. 1993;178:1753–63.

    PubMed  CAS  Google Scholar 

  54. Wells AD, Walsh MC, Sankaran D, Turka LA. T cell effector function and anergy avoidance are quantitatively linked to cell division. J Immunol. 2000;165:2432–43.

    PubMed  CAS  Google Scholar 

  55. Sloan-Lancaster J, Evavold BD, Allen PM. Induction of T-cell anergy by altered T-cell-receptor ligand on live antigen-presenting cells. Nature. 1993;363:156–9.

    PubMed  CAS  Google Scholar 

  56. Macian F, Garcia-Cozar F, Im SH, Horton HF, Byrne MC, Rao A. Transcriptional mechanisms underlying lymphocyte tolerance. Cell. 2002;109:719–31.

    PubMed  CAS  Google Scholar 

  57. Heissmeyer V, et al. A molecular dissection of lymphocyte unresponsiveness induced by sustained calcium signalling. Novartis Found Symp. 2005; 267:165–74; discussion 74–9.

    Google Scholar 

  58. Heissmeyer V, et al. Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nat Immunol. 2004;5:255–65.

    PubMed  CAS  Google Scholar 

  59. Choi S, Schwartz RH. Molecular mechanisms for adaptive tolerance and other T cell anergy models. Semin Immunol. 2007;19:140–52.

    PubMed  CAS  Google Scholar 

  60. Wells AD, Walsh MC, Bluestone JA, Turka LA. Signaling through CD28 and CTLA-4 controls two distinct forms of T cell anergy. J Clin Invest. 2001;108:895–903.

    PubMed  CAS  Google Scholar 

  61. Kang SM, Beverly B, Tran AC, Brorson K, Schwartz RH, Lenardo MJ. Transactivation by AP-1 is a molecular target of T cell clonal anergy. Science. 1992;257:1134–8.

    PubMed  CAS  Google Scholar 

  62. Li W, Whaley CD, Mondino A, Mueller DL. Blocked signal transduction to the ERK and JNK protein kinases in anergic CD4+ T cells. Science. 1996;271:1272–6.

    PubMed  CAS  Google Scholar 

  63. Fields PE, Gajewski TF, Fitch FW. Blocked Ras activation in anergic CD4+ T cells. Science. 1996;271:1276–8.

    PubMed  CAS  Google Scholar 

  64. Rengarajan J, et al. Sequential involvement of NFAT and Egr transcription factors in FasL regulation. Immunity. 2000;12:293–300.

    PubMed  CAS  Google Scholar 

  65. Safford M, et al. Egr-2 and Egr-3 are negative regulators of T cell activation. Nat Immunol. 2005;6:472–80.

    PubMed  CAS  Google Scholar 

  66. Harris JE, et al. Early growth response gene-2, a zinc-finger transcription factor, is required for full induction of clonal anergy in CD4+ T cells. J Immunol. 2004;173:7331–8.

    PubMed  CAS  Google Scholar 

  67. Stanfel MN, Shamieh LS, Kaeberlein M, Kennedy BK. The TOR pathway comes of age. Biochim Biophys Acta. 2009;1790:1067–74.

    PubMed  CAS  Google Scholar 

  68. Kim DH, Sabatini DM. Raptor and mTOR: subunits of a nutrient-sensitive complex. Curr Top Microbiol Immunol. 2004;279:259–70.

    PubMed  CAS  Google Scholar 

  69. Fingar DC, Salama S, Tsou C, Harlow E, Blenis J. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 2002;16:1472–87.

    PubMed  CAS  Google Scholar 

  70. Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr Opin Cell Biol. 2005;17:596–603.

    PubMed  CAS  Google Scholar 

  71. Wang X, Li W, Williams M, Terada N, Alessi DR, Proud CG. Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J. 2001;20:4370–9.

    PubMed  CAS  Google Scholar 

  72. Raught B, et al. Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J. 2004;23:1761–9.

    PubMed  CAS  Google Scholar 

  73. Richter JD, Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature. 2005;433:477–80.

    PubMed  CAS  Google Scholar 

  74. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129:1261–74.

    PubMed  CAS  Google Scholar 

  75. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307:1098–101.

    PubMed  CAS  Google Scholar 

  76. Mondino A, Mueller DL. mTOR at the crossroads of T cell proliferation and tolerance. Semin Immunol. 2007;19:162–72.

    PubMed  CAS  Google Scholar 

  77. Zheng Y, et al. A role for mammalian target of rapamycin in regulating T cell activation versus anergy. J Immunol. 2007;178:2163–70.

    PubMed  CAS  Google Scholar 

  78. Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood. 2005;105:4743–8.

    PubMed  CAS  Google Scholar 

  79. Battaglia M, Stabilini A, Migliavacca B, Horejs-Hoeck J, Kaupper T, Roncarolo MG. Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol. 2006;177:8338–47.

    PubMed  CAS  Google Scholar 

  80. Valmori D, et al. Rapamycin-mediated enrichment of T cells with regulatory activity in stimulated CD4+ T cell cultures is not due to the selective expansion of naturally occurring regulatory T cells but to the induction of regulatory functions in conventional CD4+ T cells. J Immunol. 2006;177:944–9.

    PubMed  CAS  Google Scholar 

  81. Kang J, Huddleston SJ, Fraser JM, Khoruts A. De novo induction of antigen-specific CD4+CD25+Foxp3+ regulatory T cells in vivo following systemic antigen administration accompanied by blockade of mTOR. J Leukoc Biol. 2008;83:1230–9.

    PubMed  CAS  Google Scholar 

  82. Delgoffe GM, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity. 2009;30:832–44.

    PubMed  CAS  Google Scholar 

  83. Lee K, et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity. 2010;32:743–53.

    PubMed  CAS  Google Scholar 

  84. Araki K, et al. mTOR regulates memory CD8 T-cell differentiation. Nature. 2009;460:108–12.

    PubMed  CAS  Google Scholar 

  85. Sinclair LV, et al. Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nat Immunol. 2008;9:513–21.

    PubMed  CAS  Google Scholar 

  86. Salmond RJ, Emery J, Okkenhaug K, Zamoyska R. MAPK, phosphatidylinositol 3-kinase, and mammalian target of rapamycin pathways converge at the level of ribosomal protein S6 phosphorylation to control metabolic signaling in CD8 T cells. J Immunol (Baltimore, Md : 1950). 2009; 183:7388–97.

  87. Avila-Flores A, Santos T, Rincon E, Merida I. Modulation of the mammalian target of rapamycin pathway by diacylglycerol kinase-produced phosphatidic acid. J Biol Chem. 2005;280:10091–9.

    PubMed  CAS  Google Scholar 

  88. Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol. 2003;5:578–81.

    PubMed  CAS  Google Scholar 

  89. Huang J, Manning BD. A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans. 2009;37:217–22.

    PubMed  CAS  Google Scholar 

  90. Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002;4:648–57.

    PubMed  CAS  Google Scholar 

  91. Potter CJ, Pedraza LG, Xu T. Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol. 2002;4:658–65.

    PubMed  CAS  Google Scholar 

  92. Cai SL, et al. Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J Cell Biol. 2006;173:279–89.

    PubMed  CAS  Google Scholar 

  93. Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell. 2005;121:179–93.

    PubMed  CAS  Google Scholar 

  94. Kumar H, Kawai T, Akira S. Toll-like receptors and innate immunity. Biochem Biophys Res Commun. 2009;388:621–5.

    PubMed  CAS  Google Scholar 

  95. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–84.

    PubMed  CAS  Google Scholar 

  96. Kawai T, Adachi O, Ogawa T, Takeda K, Akira S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity. 1999;11:115–22.

    PubMed  CAS  Google Scholar 

  97. Suzuki N, Suzuki S, Yeh WC. IRAK-4 as the central TIR signaling mediator in innate immunity. Trends Immunol. 2002;23:503–6.

    PubMed  CAS  Google Scholar 

  98. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21:335–76.

    PubMed  CAS  Google Scholar 

  99. Dunne A, O’Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci STKE. 2003;2003:re3.

  100. Takaesu G, Surabhi RM, Park KJ, Ninomiya-Tsuji J, Matsumoto K, Gaynor RB. TAK1 is critical for IkappaB kinase-mediated activation of the NF-kappaB pathway. J Mol Biol. 2003;326:105–15.

    PubMed  CAS  Google Scholar 

  101. Shibuya H, et al. TAB 1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science. 1996;272:1179–82.

    PubMed  CAS  Google Scholar 

  102. Huang Q, et al. Differential regulation of interleukin 1 receptor and Toll-like receptor signaling by MEKK3. Nat Immunol. 2004;5:98–103.

    PubMed  CAS  Google Scholar 

  103. Dumitru CD, et al. TNF-alpha induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway. Cell. 2000;103:1071–83.

    PubMed  CAS  Google Scholar 

  104. Papoutsopoulou S, et al. ABIN-2 is required for optimal activation of Erk MAP kinase in innate immune responses. Nat Immunol. 2006;7:606–15.

    PubMed  CAS  Google Scholar 

  105. Yamamoto M, et al. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol. 2002;169:6668–72.

    PubMed  CAS  Google Scholar 

  106. Yamamoto M, et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol. 2003;4:1144–50.

    PubMed  CAS  Google Scholar 

  107. Yamamoto M, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 2003;301:640–3.

    PubMed  CAS  Google Scholar 

  108. Hoshino K, Kaisho T, Iwabe T, Takeuchi O, Akira S. Differential involvement of IFN-beta in Toll-like receptor-stimulated dendritic cell activation. Int Immunol. 2002;14:1225–31.

    PubMed  CAS  Google Scholar 

  109. Yoneyama M, Suhara W, Fukuhara Y, Fukuda M, Nishida E, Fujita T. Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J. 1998;17:1087–95.

    PubMed  CAS  Google Scholar 

  110. Fukao T, et al. PI3 K-mediated negative feedback regulation of IL-12 production in DCs. Nat Immunol. 2002;3:875–81.

    PubMed  CAS  Google Scholar 

  111. Liu CH, et al. Diacylglycerol kinase zeta regulates microbial recognition and host resistance to Toxoplasma gondii. J Exp Med. 2007;204:781–92.

    PubMed  CAS  Google Scholar 

  112. Colina R, et al. Translational control of the innate immune response through IRF-7. Nature. 2008;452:323–8.

    PubMed  CAS  Google Scholar 

  113. Weichhart T, et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity. 2008;29:565–77.

    PubMed  CAS  Google Scholar 

  114. Baker AK, Wang R, Mackman N, Luyendyk JP. Rapamycin enhances LPS induction of tissue factor and tumor necrosis factor-alpha expression in macrophages by reducing IL-10 expression. Mol Immunol. 2009;46:2249–55.

    PubMed  CAS  Google Scholar 

  115. Galli SJ. Complexity and redundancy in the pathogenesis of asthma: reassessing the roles of mast cells and T cells. J Exp Med. 1997;186:343–7.

    PubMed  CAS  Google Scholar 

  116. Benoist C, Mathis D. Mast cells in autoimmune disease. Nature. 2002;420:875–8.

    PubMed  CAS  Google Scholar 

  117. Frossi B, De Carli M, Pucillo C. The mast cell: an antenna of the microenvironment that directs the immune response. J Leukoc Biol. 2004;75:579–85.

    PubMed  CAS  Google Scholar 

  118. Nadler MJ, Matthews SA, Turner H, Kinet JP. Signal transduction by the high-affinity immunoglobulin E receptor Fc epsilon RI: coupling form to function. Adv Immunol. 2000;76:325–55.

    PubMed  CAS  Google Scholar 

  119. Wedemeyer J, Tsai M, Galli SJ. Roles of mast cells and basophils in innate and acquired immunity. Curr Opin Immunol. 2000;12:624–31.

    PubMed  CAS  Google Scholar 

  120. Rivera J, et al. Macromolecular protein signaling complexes and mast cell responses: a view of the organization of IgE-dependent mast cell signaling. Mol Immunol. 2002; 38:1253.

    Google Scholar 

  121. Zhang J, Berenstein E, Evans R, Siraganian R. Transfection of Syk protein tyrosine kinase reconstitutes high affinity IgE receptor-mediated degranulation in a Syk-negative variant of rat basophilic leukemia RBL-2H3 cells. J Exp Med. 1996;184:71–9.

    PubMed  CAS  Google Scholar 

  122. Parravicini V, et al. Fyn kinase initiates complementary signals required for IgE-dependent mast cell degranulation. Nat Immunol. 2002;3:741–8.

    PubMed  CAS  Google Scholar 

  123. Hata D, et al. Involvement of Bruton’s tyrosine kinase in FcεRI-dependent mast cell degranulation and cytokine production. J Exp Med. 1998;187:1235–47.

    PubMed  CAS  Google Scholar 

  124. Saitoh S, et al. LAT is essential for FcεRI-mediated mast cell activation. Immunity. 2000;12:525–35.

    PubMed  CAS  Google Scholar 

  125. Pivniouk VI, Martin TR, Lu-Kuo JM, Katz HR, Oettgen HC, Geha RS. SLP-76 deficiency impairs signaling via the high-affinity IgE receptor in mast cells. J Clin Invest. 1999;103:1737–43.

    PubMed  CAS  Google Scholar 

  126. Wu JN, Jordan MS, Silverman MA, Peterson EJ, Koretzky GA. Differential requirement for adapter proteins src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa and Adhesion- and degranulation-promoting adapter protein FcεRI signaling and mast cell function. J Immunol. 2004;172:6768–74.

    PubMed  CAS  Google Scholar 

  127. Gu H, et al. Essential role for Gab2 in the allergic response. Nature. 2001;412:186–90.

    PubMed  CAS  Google Scholar 

  128. Xie Z-H, Ambudkar I, Siraganian RP. The adapter molecule Gab2 regulates FcεRI-mediated signal transduction in mast cells. J Immunol. 2002;168:4682–91.

    PubMed  CAS  Google Scholar 

  129. Fukao T, Terauchi Y, Kadowaki T, Koyasu S. Role of phosphoinositide 3-kinase signaling in mast cells: new insights from knockout mouse studies. J Mol Med. 2003;81:524–35.

    PubMed  CAS  Google Scholar 

  130. Manetz TS, Gonzalez-Espinosa C, Arudchandran R, Xirasagar S, Tybulewicz V, Rivera J. Vav1 regulates phospholipase cgamma activation and calcium responses in mast cells. Mol Cell Biol. 2001;21:3763–74.

    PubMed  CAS  Google Scholar 

  131. Schneider H, Cohen-Dayag A, Pecht I. Tyrosine phosphorylation of phospholipase C γ1 couples the Fc epsilon receptor mediated signal to mast cells secretion. Int Immunol. 1992;4:447–53.

    PubMed  CAS  Google Scholar 

  132. Li W, Deanin GG, Margolis B, Schlessinger J, Oliver JM. Fc epsilon R1-mediated tyrosine phosphorylation of multiple proteins, including phospholipase C γ 1 and the receptor βγ 2 complex, in RBL-2H3 rat basophilic leukemia cells. Mol Cell Biol. 1992;12:3176–82.

    PubMed  CAS  Google Scholar 

  133. Fukamachi H, Kawakami Y, Takei M, Ishizaka T, Ishizaka K, Kawakami T. Association of protein-tyrosine kinase with phospholipase C-γ 1 in bone marrow-derived mouse mast cells. Proc Natl Acad Sci USA. 1992;89:9524–8.

    PubMed  CAS  Google Scholar 

  134. Atkinson TP, Kaliner MA, Hohman RJ. Phospholipase C-γ 1 is translocated to the membrane of rat basophilic leukemia cells in response to aggregation of IgE receptors. J Immunol. 1992;148:2194–200.

    PubMed  CAS  Google Scholar 

  135. Liu Y, Graham C, Parravicini V, Brown MJ, Rivera J, Shaw S. Protein kinase C θ is expressed in mast cells and is functionally involved in Fcepsilon receptor I signaling. J Leukoc Biol. 2001;69:831–40.

    PubMed  CAS  Google Scholar 

  136. Tsai M, Chen RH, Tam SY, Blenis J, Galli SJ. Activation of MAP kinases, pp90rsk and pp70–S6 kinases in mouse mast cells by signaling through the c-kit receptor tyrosine kinase or FcεRI: rapamycin inhibits activation of pp70–S6 kinase and proliferation in mouse mast cells. Eur J Immunol. 1993;23:3286–91.

    PubMed  CAS  Google Scholar 

  137. Kimata M, Inagaki N, Kato T, Miura T, Serizawa I, Nagai H. Roles of mitogen-activated protein kinase pathways for mediator release from human cultured mast cells. Biochem Pharmacol. 2000;60:589–94.

    PubMed  CAS  Google Scholar 

  138. Kim MS, Kuehn HS, Metcalfe DD, Gilfillan AM. Activation and function of the mTORC1 pathway in mast cells. J Immunol. 2008;180:4586–95.

    PubMed  CAS  Google Scholar 

  139. Tsai M, Tam SY, Galli SJ. Distinct patterns of early response gene expression and proliferation in mouse mast cells stimulated by stem cell factor, interleukin-3, or IgE and antigen. Eur J Immunol. 1993;23:867–72.

    PubMed  CAS  Google Scholar 

  140. Kim TD, Eddlestone GT, Mahmoud SF, Kuchtey J, Fewtrell C. Correlating Ca2+ Responses and Secretion in Individual RBL-2H3 Mucosal Mast Cells. J Biol Chem. 1997;272:31225–9.

    PubMed  CAS  Google Scholar 

  141. Blank U, Rivera J. The ins and outs of IgE-dependent mast-cell exocytosis. Trend Immunol. 2004;25:266–73.

    CAS  Google Scholar 

  142. Nechushtan H, Leitges M, Cohen C, Kay G, Razin E. Inhibition of degranulation and interleukin-6 production in mast cells derived from mice deficient in protein kinase C β. Blood. 2000;95:1752–7.

    PubMed  CAS  Google Scholar 

  143. White JR, Zembryki D, Hanna N, Mong S. Differential inhibition of histamine release from mast cells by protein kinase C inhibitors: staurosporine and K-252a. Biochem Pharmacol. 1990;40:447–56.

    PubMed  CAS  Google Scholar 

  144. Ozawa K, et al. Ca(2+)-dependent and Ca(2+)-independent isozymes of protein kinase C mediate exocytosis in antigen-stimulated rat basophilic RBL-2H3 cells. Reconstitution of secretory responses with Ca2+ and purified isozymes in washed permeabilized cells. J Biol Chem. 1993;268:1749–56.

    PubMed  CAS  Google Scholar 

  145. Zhang C, Baumgartner RA, Yamada K, Beaven MA. Mitogen-activated protein (MAP) kinase regulates production of tumor necrosis factor-α and release of arachidonic acid in mast cells. Indications of communication between p38 AND p42 map kinases. J Biol Chem. 1997;272:13397–402.

    PubMed  CAS  Google Scholar 

  146. Ishizuka T, et al. Mast cell tumor necrosis factor alpha production is regulated by MEK kinases. PNAS. 1997;94:6358–63.

    PubMed  CAS  Google Scholar 

  147. Lorentz A, Klopp I, Gebhardt T, Manns MP, Bischoff SC. Role of activator protein 1, nuclear factor-κB, and nuclear factor of activated T cells in IgE receptor-mediated cytokine expression in mature human mast cells. J Allergy Clin Immunol. 2003;111:1062–8.

    PubMed  CAS  Google Scholar 

  148. Turner H, Cantrell DA. Distinct ras effector pathways are involved in fcepsilon R1 regulation of the transcriptional activity of Elk-1 and NFAT in mast cells. J Exp Med. 1997;185:43–54.

    PubMed  CAS  Google Scholar 

  149. Wang D, et al. Phospholipase Cgamma2 is essential in the functions of B cell and several Fc receptors. Immunity. 2000;13:25–35.

    PubMed  Google Scholar 

  150. Wen R, Jou S-T, Chen Y, Hoffmeyer A, Wang D. Phospholipase Cγ2 is essential for specific functions of FcεR and FcγR. J Immunol. 2002;169:6743–52.

    PubMed  CAS  Google Scholar 

  151. Leitges M, et al. Protein Kinase C-δ Is a negative regulator of antigen-induced mast cell degranulation. Mol Cell Biol. 2002;22:3970–80.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research is supported by grants from the American Heart Association, the American Cancer Society, NIH (R01-AI079088, R01-AI076357, R21-AI079873), and the Food Allergy and Anaphylaxis Network to Xiao-Ping Zhong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ping Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, XP., Shin, J., Gorentla, B.K. et al. Receptor signaling in immune cell development and function. Immunol Res 49, 109–123 (2011). https://doi.org/10.1007/s12026-010-8175-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-010-8175-9

Keywords

Navigation