Clinical Impact of p27 Kip1 and CaSR Expression on Primary Hyperparathyroidism

  • Gozde Sengul Aycicek
  • Berna Imge Aydogan
  • Mustafa Sahin
  • Cevriye Cansız Ersoz
  • Serpil Dizbay Sak
  • Nilgun Baskal
Article
  • 22 Downloads

Abstract

We aimed to investigate the expressions of p27 kinase inhibitory protein 1 (p27 Kip1 ) and calcium sensing receptor (CaSR) in adenomas and normal parathyroid tissue and to evaluate the relationship of these molecules with clinical and biochemical parameters in primary hyperparathyroidism (PHPT). Fifty-one patients with histopathologically confirmed parathyroid adenomas and 20 patients with normal parathyroid glands (which were removed incidentally during thyroid resection) were included. Immunohistochemical stainings of CaSR and p27 Kip1 were performed in surgical specimens. Clinical features, biochemical parameters, and BMD measurements of patients with PHPT were evaluated retrospectively. Expressions of p27 Kip1 and CaSR were decreased in parathyroid adenomas, compared to normal glands (p < 0.05). High intensity of CaSR staining (3+) was more frequent in normal parathyroid tissue (75%) than adenomas (12%) (p < 0.01). Hypertension was not observed in patients with high staining intensity of CaSR (p = 0.032). There was a negative association between CaSR expression and body mass index (BMI) (p = 0.027, r = − 0.313). There was no significant relationship between p27 Kip1 and CaSR expressions, serum calcium, plasma parathormone, 25-hydroxy vitamin D levels, and bone density (p > 0.05). The expressions of p27 Kip1 and CaSR were decreased in PHPT patients. This reduction may play an important role in the pathogenesis of PHPT. However, neither p27 Kip1 nor CaSR expression was found to be useful in predicting prognosis or severity of disease.

Keywords

Primary hyperparathyroidism Parathyroid adenoma p27Kip1 CaSR 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

For this type of study, formal consent is not required.

Disclosure Statement

The authors have nothing to disclose.

References

  1. 1.
    Wermers RA, Khosla S, Atkinson EJ, Achenbach SJ, Oberg AL, Grant CS, et al. Incidence of primary hyperparathyroidism in Rochester, Minnesota, 1993-2001: an update on the changing epidemiology of the disease. J Bone Miner Res. 2006;21(1):171–177.CrossRefPubMedGoogle Scholar
  2. 2.
    Costa-Guda J, Arnold A. Genetic and epigenetic changes in sporadic endocrine tumors: parathyroid tumors. Mol Cell Endocrinol. 2014;386(1–2):46–54.CrossRefPubMedGoogle Scholar
  3. 3.
    Heppner C, Kester MB, Agarwal SK, Debelenko LV, Emmert-Buck MR, Guru SC, et al. Somatic mutation of the MEN1 gene in parathyroid tumours. Nat Genet. 1997;16(4):375–378.CrossRefPubMedGoogle Scholar
  4. 4.
    Bjorklund P, Lindberg D, Akerstrom G, Westin G. Stabilizing mutation of CTNNB1/beta-catenin and protein accumulation analyzed in a large series of parathyroid tumors of Swedish patients. Mol Cancer. 2008;7:53.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Soong CP, Arnold A. Recurrent ZFX mutations in human sporadic parathyroid adenomas. Oncoscience. 2014;1(5):360–366.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lloyd RV, Jin L, Qian X, Kulig E. Aberrant p27kip1 expression in endocrine and other tumors. Am J Pathol. 1997;150(2):401–407.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Erickson LA, Jin L, Wollan P, Thompson GB, van Heerden JA, Lloyd RV. Parathyroid hyperplasia, adenomas, and carcinomas: differential expression of p27Kip1 protein. Am J Surg Pathol. 1999;23(3):288–295.CrossRefPubMedGoogle Scholar
  8. 8.
    Yano S, Sugimoto T, Tsukamoto T, Chihara K, Kobayashi A, Kitazawa S, et al. Decrease in vitamin D receptor and calcium-sensing receptor in highly proliferative parathyroid adenomas. Eur J Endocrinol. 2003;148(4):403–411.CrossRefPubMedGoogle Scholar
  9. 9.
    Filopanti M, Corbetta S, Barbieri AM, Spada A. Pharmacology of the calcium sensing receptor. Clin Cases Miner Bone Metab. 2013;10(3):162–165.PubMedGoogle Scholar
  10. 10.
    Lee M, Pellegata NS. Multiple endocrine neoplasia type 4. Front Horm Res. 2013;41:63–78.CrossRefPubMedGoogle Scholar
  11. 11.
    Costa-Guda J, Marinoni I, Molatore S, Pellegata NS, Arnold A. Somatic mutation and germline sequence abnormalities in CDKN1B, encoding p27Kip1, in sporadic parathyroid adenomas. J Clin Endocrinol Metab. 2011;96(4):E701–E706.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser. 1994;843:1–129.Google Scholar
  13. 13.
    Hemmer S, Wasenius VM, Haglund C, Zhu Y, Knuutila S, Franssila K, et al. Deletion of 11q23 and cyclin D1 overexpression are frequent aberrations in parathyroid adenomas. Am J Pathol. 2001;158(4):1355–1362.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hsi ED, Zukerberg LR, Yang WI, Arnold A. Cyclin D1/PRAD1 expression in parathyroid adenomas: an immunohistochemical study. J Clin Endocrinol Metab. 1996;81(5):1736–1739.PubMedGoogle Scholar
  15. 15.
    Canaff L, Hendy GN. Human calcium-sensing receptor gene. Vitamin D response elements in promoters P1 and P2 confer transcriptional responsiveness to 1,25-dihydroxyvitamin D. J Biol Chem. 2002;277(33):30337–30350.CrossRefPubMedGoogle Scholar
  16. 16.
    Varshney S, Bhadada SK, Saikia UN, Sachdeva N, Behera A, Arya AK, et al. Simultaneous expression analysis of vitamin D receptor, calcium-sensing receptor, cyclin D1, and PTH in symptomatic primary hyperparathyroidism in Asian Indians. Eur J Endocrinol. 2013;169(1):109–116.CrossRefPubMedGoogle Scholar
  17. 17.
    Canaff L, Zhou X, Hendy GN. The proinflammatory cytokine, interleukin-6, up-regulates calcium-sensing receptor gene transcription via Stat1/3 and Sp1/3. J Biol Chem. 2008;283(20):13586–13600.CrossRefPubMedGoogle Scholar
  18. 18.
    Canaff L, Hendy GN. Calcium-sensing receptor gene transcription is up-regulated by the proinflammatory cytokine, interleukin-1beta. Role of the NF-kappaB PATHWAY and kappaB elements. J Biol Chem. 2005;280(14):14177–14188.CrossRefPubMedGoogle Scholar
  19. 19.
    Zhai TY, Cui BH, Zou L, Zeng JY, Gao S, Zhao Q, et al. Expression and Role of the Calcium-Sensing Receptor in Rat Peripheral Blood Polymorphonuclear Neutrophils. Oxid Med Cell Longev. 2017;2017:3869561.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bolland MJ, Grey AB, Gamble GD, Reid IR. Association between primary hyperparathyroidism and increased body weight: a meta-analysis. J Clin Endocrinol Metab. 2005;90(3):1525–1530.CrossRefPubMedGoogle Scholar
  21. 21.
    Al-Daghri NM, Al-Attas OS, Alkharfy KM, Khan N, Mohammed AK, Vinodson B, et al. Association of VDR-gene variants with factors related to the metabolic syndrome, type 2 diabetes and vitamin D deficiency. Gene. 2014;542(2):129–133.CrossRefPubMedGoogle Scholar
  22. 22.
    Cifuentes M, Fuentes C, Tobar N, Acevedo I, Villalobos E, Hugo E, et al. Calcium sensing receptor activation elevates proinflammatory factor expression in human adipose cells and adipose tissue. Mol Cell Endocrinol. 2012;361(1–2):24–30.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cifuentes M, Fuentes C, Mattar P, Tobar N, Hugo E, Ben-Jonathan N, et al. Obesity-associated proinflammatory cytokines increase calcium sensing receptor (CaSR) protein expression in primary human adipocytes and LS14 human adipose cell line. Arch Biochem Biophys. 2010;500(2):151–156.CrossRefPubMedGoogle Scholar
  24. 24.
    Atchison DK, Harding P, Beierwaltes WH. Hypercalcemia reduces plasma renin via parathyroid hormone, renal interstitial calcium, and the calcium-sensing receptor. Hypertension. 2011;58(4):604–610.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Atchison DK, Beierwaltes WH. The influence of extracellular and intracellular calcium on the secretion of renin. Pflugers Arch. 2013;465(1):59–69.CrossRefPubMedGoogle Scholar
  26. 26.
    Chen S, Glenn DJ, Ni W, Grigsby CL, Olsen K, Nishimoto M, et al. Expression of the vitamin d receptor is increased in the hypertrophic heart. Hypertension. 2008;52(6):1106–1112.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Li YC, Qiao G, Uskokovic M, Xiang W, Zheng W, Kong J. Vitamin D: a negative endocrine regulator of the renin-angiotensin system and blood pressure. J Steroid Biochem Mol Biol. 2004;89-90(1–5):387–392.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Gozde Sengul Aycicek
    • 1
  • Berna Imge Aydogan
    • 2
  • Mustafa Sahin
    • 2
  • Cevriye Cansız Ersoz
    • 3
  • Serpil Dizbay Sak
    • 3
  • Nilgun Baskal
    • 2
  1. 1.Department of Internal MedicineAnkara University Faculty of MedicineAnkaraTurkey
  2. 2.Department of Endocrinology and MetabolismAnkara University Faculty of MedicineAnkaraTurkey
  3. 3.Department of PathologyAnkara University Faculty of MedicineAnkaraTurkey

Personalised recommendations