Skip to main content

Advertisement

Log in

3D-Deep Learning Based Automatic Diagnosis of Alzheimer’s Disease with Joint MMSE Prediction Using Resting-State fMRI

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

We performed this research to 1) evaluate a novel deep learning method for the diagnosis of Alzheimer’s disease (AD) and 2) jointly predict the Mini Mental State Examination (MMSE) scores of South Korean patients with AD. Using resting-state functional Magnetic Resonance Imaging (rs-fMRI) scans of 331 participants, we obtained functional 3-dimensional (3-D) independent component spatial maps for use as features in classification and regression tasks. A 3-D convolutional neural network (CNN) architecture was developed for the classification task. MMSE scores were predicted using: linear least square regression (LLSR), support vector regression, bagging-based ensemble regression, and tree regression with group independent component analysis (gICA) features. To improve MMSE regression performance, we applied feature optimization methods including least absolute shrinkage and selection operator and support vector machine-based recursive feature elimination (SVM-RFE). The mean balanced test accuracy was 85.27% for the classification of AD versus healthy controls. The medial visual, default mode, dorsal attention, executive, and auditory related networks were mainly associated with AD. The maximum clinical MMSE score prediction accuracy with the LLSR method applied on gICA combined with SVM-RFE features had the lowest root mean square error (3.27 ± 0.58) and the highest R2 value (0.63 ± 0.02). Classification of AD and healthy controls can be successfully achieved using only rs-fMRI and MMSE scores can be accurately predicted using functional independent component features. In the absence of trained clinicians, AD disease status and clinical MMSE scores can be jointly predicted using 3-D deep learning and regression learning approaches with rs-fMRI data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abou-Elseoud, A., Starck, T., Remes, J., Nikkinen, J., Tervonen, O., & Kiviniemi, V. (2010). The effect of model order selection in group PICA. Human Brain Mapping, 31(8), 1207–1216.

    PubMed  PubMed Central  Google Scholar 

  • Assaf, M., Jagannathan, K., Calhoun, V. D., Miller, L., Stevens, M. C., Sahl, R., O'Boyle, J. G., Schultz, R. T., & Pearlson, G. D. (2010). Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage, 53(1), 247–256.

    PubMed  Google Scholar 

  • Barthel, H., Gertz, H. J., Dresel, S., Peters, O., Bartenstein, P., Buerger, K., Hiemeyer, F., Wittemer-Rump, S. M., Seibyl, J., Reininger, C., Sabri, O., & Florbetaben Study Group. (2011). Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer's disease and healthy controls: a multicentre phase 2 diagnostic study. The Lancet Neurology, 10(5), 424–435.

    CAS  PubMed  Google Scholar 

  • Beaman, S. R. D., Beaman, P. E., Garcia-Pena, C., Villa, M. A., Heres, J., Córdova, A., & Jagger, C. (2004). Validation of a modified version of the Mini-Mental State Examination (MMSE) in Spanish. Aging, Neuropsychology, and Cognition, 11(1), 1–11.

    Google Scholar 

  • Beckmann, C. F., Mackay, C. E., Filippini, N., & Smith, S. M. (2009). Group comparison of resting-state FMRI data using multi-subject ICA and dual regression. NeuroImage, 47(Suppl 1), S148.

    Google Scholar 

  • Birn, R. M., Molloy, E. K., Patriat, R., Parker, T., Meier, T. B., Kirk, G. R., Nair, V. A., Meyerand, M. E., & Prabhakaran, V. (2013). The effect of scan length on the reliability of resting-state fMRI connectivity estimates. NeuroImage, 83, 550–558.

    PubMed  Google Scholar 

  • Bloom, D. E., Boersch-Supan, A., McGee, P., & Seike, A. (2011). Population aging: facts, challenges, and responses. Benefits and Compensation International, 41(1), 22.2.

    Google Scholar 

  • Brier, M. R., Thomas, J. B., Snyder, A. Z., Benzinger, T. L., Zhang, D., Raichle, M. E., Holtzman, D. M., Morris, J. C., & Ances, B. M. (2012). Loss of intranetwork and internetwork resting state functional connections with Alzheimer’s disease progression. Journal of Neuroscience, 32(26), 8890–8899.

    CAS  PubMed  Google Scholar 

  • Cherkassky, V. L., Kana, R. K., Keller, T. A., & Just, M. A. (2006). Functional connectivity in a baseline resting-state network in autism. Neuroreport, 17(16), 1687–1690.

    PubMed  Google Scholar 

  • Christensen, K., Doblhammer, G., Rau, R., & Vaupel, J. W. (2009). Ageing populations: the challenges ahead. The Lancet, 374(9696), 1196–1208.

    Google Scholar 

  • Clark, C. M., Xie, S., Chittams, J., Ewbank, D., Peskind, E., Galasko, D., Morris, J. C., McKeel, D. W., Farlow, M., Weitlauf, S. L., Quinn, J., Kaye, J., Knopman, D., Arai, H., Doody, R. S., DeCarli, C., Leight, S., Lee, V. M. Y., & Trojanowski, J. Q. (2003). Cerebrospinal fluid tau and β-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Archives of Neurology, 60(12), 1696–1702.

    PubMed  Google Scholar 

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

    Google Scholar 

  • Cox, D. D., & Savoy, R. L. (2003). Functional magnetic resonance imaging (fMRI)“brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex. NeuroImage, 19(2), 261–270.

    PubMed  Google Scholar 

  • Dosenbach, N. U., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A., et al. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences, 104(26), 11073–11078.

    CAS  Google Scholar 

  • Drevets, W. C., Price, J. L., & Furey, M. L. (2008). Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Structure and Function, 213(1–2), 93–118.

    PubMed  Google Scholar 

  • Duc, N. T., & Lee, B. (2019). Microstate functional connectivity in EEG cognitive task revealed by multivariate Gaussian hidden Markov model with phase locking value. Journal of Neural Engineering, 16, 026033. https://doi.org/10.1088/1741-2552/ab0169.

    Article  PubMed  Google Scholar 

  • Duchesne, S., Caroli, A., Geroldi, C., Frisoni, G.B., & Collins, D.L. (2005). Predicting clinical variable from MRI features: application to MMSE in MCI. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 392–399). Springer, Berlin, Heidelberg.

  • Duchesne, S., Caroli, A., Geroldi, C., Collins, D. L., & Frisoni, G. B. (2009). Relating one-year cognitive change in mild cognitive impairment to baseline MRI features. Neuroimage, 47(4), 1363–1370.

    PubMed  Google Scholar 

  • Dukart, J., Mueller, K., Horstmann, A., Barthel, H., Möller, H. E., Villringer, A., Sabri, O., & Schroeter, M. L. (2011). Combined evaluation of FDG-PET and MRI improves detection and differentiation of dementia. PLoS One, 6(3), e18111.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan, Y., Kaufer, D., & Shen, D. (2010). Joint estimation of multiple clinical variables of neurological diseases from imaging patterns. In Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on 852–855. https://doi.org/10.1109/ISBI.2010.5490120.

  • Farde, L., Nordström, A. L., Karlsson, P., Halldin, C., & Sedvall, G. (1995). Positron emission tomography studies on dopamine receptors in schizophrenia. Clinical Neuropharmacology, 18, S121–S129.

    Google Scholar 

  • Foroughan, M., Jafari, Z., Shirin, B. P., Ghaem, M. F. Z., & Rahgozar, M. (2008). Validation of mini-mental state examination (MMSE) in the elderly population of Tehran. Advances in Cognitive Science, 2(38), 29–37.

    Google Scholar 

  • Fountoulakis, K. N., Tsolaki, M., Chantzi, H., & Kazis, A. (2000). Mini mental state examination (MMSE): a validation study in Greece. American Journal of Alzheimer’s Disease, 15(6), 342–345.

    Google Scholar 

  • Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2006). Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences, 103(26), 10046–10051.

    CAS  Google Scholar 

  • Franciotti, R., Falasca, N. W., Bonanni, L., Anzellotti, F., Maruotti, V., Comani, S., Thomas, A., Tartaro, A., Taylor, J. P., & Onofrj, M. (2013). Default network is not hypoactive in dementia with fluctuating cognition: an Alzheimer disease/dementia with Lewy bodies comparison. Neurobiology of Aging, 34(4), 1148–1158.

    PubMed  Google Scholar 

  • Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1–22.

    PubMed  PubMed Central  Google Scholar 

  • Frisoni, G. B., Fox, N. C., Jack, C. R., Jr., Scheltens, P., & Thompson, P. M. (2010). The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology, 6(2), 67–77.

    PubMed  PubMed Central  Google Scholar 

  • Greicius, M. D., Flores, B. H., Menon, V., Glover, G. H., Solvason, H. B., Kenna, H., Reiss, A. L., & Schatzberg, A. F. (2007). Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biological Psychiatry, 62(5), 429–437.

    PubMed  PubMed Central  Google Scholar 

  • Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46(1–3), 389–422.

    Google Scholar 

  • He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision 1026–1034. https://doi.org/10.1109/ICCV.2015.123.

  • Hoops, S., Nazem, S., Siderowf, A. D., Duda, J. E., Xie, S. X., Stern, M. B., & Weintraub, D. (2009). Validity of the MoCA and MMSE in the detection of MCI and dementia in Parkinson disease. Neurology, 73(21), 1738–1745.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, M., Pelak, V. S., & Cordes, D. (2012). Aberrant default mode network in subjects with amnestic mild cognitive impairment using resting-state functional MRI. Magnetic Resonance Imaging, 30(1), 48–61.

    PubMed  Google Scholar 

  • Kinsella, K., & Phillips, D. R. (2005). Global aging: The challenge of success, Population Reference Bureau. Washington, DC.

  • Knopman, D. S., Boeve, B. F., & Petersen, R. C. (2003). Essentials of the proper diagnoses of mild cognitive impairment, dementia, and major subtypes of dementia. In Mayo Clinic Proceedings 78 (10), 1290–1308. https://doi.org/10.4065/78.10.1290.

    PubMed  Google Scholar 

  • Koch, W., Teipel, S., Mueller, S., Benninghoff, J., Wagner, M., Bokde, A. L., et al. (2012). Diagnostic power of default mode network resting state fMRI in the detection of Alzheimer’s disease. Neurobiology of Aging, 33(3), 466–478.

    PubMed  Google Scholar 

  • LaConte, S., Strother, S., Cherkassky, V., Anderson, J., & Hu, X. (2005). Support vector machines for temporal classification of block design fMRI data. NeuroImage, 26(2), 317–329.

    PubMed  Google Scholar 

  • Liu, S., Liu, S., Cai, W., Che, H., Pujol, S., Kikinis, R., Feng, D., Fulham, M. J., & ADNI. (2015). Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease. IEEE Transactions on Biomedical Engineering, 62(4), 1132–1140.

    PubMed  Google Scholar 

  • Lu, W., & Rajapakse, J. C. (2006). ICA with reference. Neurocomputing, 69(16–18), 2244–2257.

    Google Scholar 

  • Mahmoudi, A., Takerkart, S., Regragui, F., Boussaoud, D., & Brovelli, A. (2012). Multivoxel pattern analysis for FMRI data: a review. Computational and Mathematical Methods in Medicine, 2012, 1–14.

    Google Scholar 

  • Mourao-Miranda, J., Bokde, A. L., Born, C., Hampel, H., & Stetter, M. (2005). Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data. NeuroImage, 28(4), 980–995.

    PubMed  Google Scholar 

  • Nguyen, D. T., Ryu, S., Qureshi, M. N. I., Choi, M., Lee, K. H., & Lee, B. (2019). Hybrid multivariate pattern analysis combined with extreme learning machine for Alzheimer’s dementia diagnosis using multi-measure rs-fMRI spatial patterns. PLOS One, 14, e0212582. https://doi.org/10.1371/journal.pone.0212582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh, J., Chun, J. W., Kim, E., Park, H. J., Lee, B., & Kim, J. J. (2017). Aberrant neural networks for the recognition memory of socially relevant information in patients with schizophrenia. Brain and Behavior, 7(1), e00602.

    PubMed  Google Scholar 

  • Okubo, Y., Suhara, T., Suzuki, K., Kobayashi, K., Inoue, O., Terasaki, O., Someya, Y., Sassa, T., Sudo, Y., Matsushima, E., Iyo, M., Tateno, Y., & Toru, M. (1997). Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature, 385(6617), 634–636.

    CAS  PubMed  Google Scholar 

  • Pascoal, T. A., Mathotaarachchi, S., Shin, M., Park, A. Y., Mohades, S., Benedet, A. L., et al. (2018). Amyloid and tau signatures of brain metabolic decline in preclinical Alzheimer’s disease. European Journal of Nuclear Medicine and Molecular Imaging, 45(6), 1021–1030.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prince, M., Comas-Herrera, A., Knapp, M., Guerchet, M., & Karagiannidou, M. (2016). World Alzheimer report 2016: improving healthcare for people living with dementia: coverage, quality and costs now and in the future. Alzheimer’s Disease International.

    Google Scholar 

  • Qiu, A., Vaillant, M., Barta, P., Ratnanather, J. T., & Miller, M. I. (2008). Region-of-interest-based analysis with application of cortical thickness variation of left planum temporale in schizophrenia and psychotic bipolar disorder. Human Brain Mapping, 29(8), 973–985.

    PubMed  Google Scholar 

  • Qureshi, M. N. I., Min, B., Jo, H. J., & Lee, B. (2016). Multiclass classification for the differential diagnosis on the ADHD subtypes using recursive feature elimination and hierarchical extreme learning machine: structural MRI study. PLoS One, 11, e0160697.

    PubMed  PubMed Central  Google Scholar 

  • Qureshi, M. N. I., Oh, J., Cho, D., Jo, H. J., & Lee, B. (2017a). Multimodal discrimination of schizophrenia using hybrid weighted feature concatenation of brain functional connectivity and anatomical features with an extreme learning machine. Frontiers in Neuroinformatics, 11, 59.

    PubMed  PubMed Central  Google Scholar 

  • Qureshi, M. N. I., Oh, J., Min, B., Jo, H. J., & Lee, B. (2017b). Multi-modal, multi-measure, and multi-class discrimination of ADHD with hierarchical feature extraction and extreme learning machine using structural and functional brain MRI. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2017.00157.

  • Qureshi, M. N. I., Ryu, S., Song, J., Lee, K., & Lee, B. (2019). Evaluation of functional decline in Alzheimer’s dementia using 3D deep learning and group ICA for rs-fMRI measurements. Front Aging Neuroscience. https://doi.org/10.3389/fnagi.2019.00008.

  • Rajapakse, J. C., & Zhou, J. (2007). Learning effective brain connectivity with dynamic Bayesian networks. NeuroImage, 37(3), 749–760.

    PubMed  Google Scholar 

  • Rashid, B., Damaraju, E., Pearlson, G. D., & Calhoun, V. D. (2014). Dynamic connectivity states estimated from resting fMRI identify differences among schizophrenia, bipolar disorder, and healthy control subjects. Frontiers in Human Neuroscience, 8, 897.

    PubMed  PubMed Central  Google Scholar 

  • Rice, D. P., Fox, P. J., Max, W., Webber, P. A., Hauck, W. W., Lindeman, D. A., & Segura, E. (1993). The economic burden of Alzheimer’s disease care. Health Affairs, 12(2), 164–176.

    CAS  PubMed  Google Scholar 

  • Rombouts, S. A., Barkhof, F., Goekoop, R., Stam, C. J., & Scheltens, P. (2005). Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: an fMRI study. Human Brain Mapping, 26(4), 231–239.

    PubMed  PubMed Central  Google Scholar 

  • Silbersweig, D. A., Stern, E., Frith, C., Cahill, C., Holmes, A., Grootoonk, S., Seaward, J., McKenna, P., Chua, S. E., Schnorr, L., Jones, T., & Frackowiak, R. S. J. (1995). A functional neuroanatomy of hallucinations in schizophrenia. Nature, 378(6553), 176–179.

    CAS  PubMed  Google Scholar 

  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv [preprint]:1409.1556.

  • Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23, S208–S219.

    PubMed  Google Scholar 

  • Stonnington, C. M., Chu, C., Klöppel, S., Jack, C. R., Jr., Ashburner, J., Frackowiak, R. S., & Alzheimer Disease Neuroimaging Initiative. (2010). Predicting clinical scores from magnetic resonance scans in Alzheimer’s disease. NeuroImage, 51(4), 1405–1413.

    PubMed  Google Scholar 

  • Suk, H. I., & Shen, D. (2013). Deep learning-based feature representation for AD/MCI classification. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 583–590). Springer, Berlin, Heidelberg.

  • Suk, H. I., Lee, S. W., Shen, D., & Alzheimer’s Disease Neuroimaging Initiative. (2015). Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Structure and Function, 220(2), 841–859.

    PubMed  Google Scholar 

  • Suk, H. I., Wee, C. Y., Lee, S. W., & Shen, D. (2016). State-space model with deep learning for functional dynamics estimation in resting-state fMRI. NeuroImage, 129, 292–307.

    PubMed  Google Scholar 

  • Supekar, K., Menon, V., Rubin, D., Musen, M., & Greicius, M. D. (2008). Network analysis of intrinsic functional brain connectivity in Alzheimer's disease. PLoS Computational Biology, 4(6), e1000100.

    PubMed  PubMed Central  Google Scholar 

  • Supekar, K., Musen, M., & Menon, V. (2009). Development of large-scale functional brain networks in children. PLoS Biology, 7(7), e1000157.

    PubMed  PubMed Central  Google Scholar 

  • Syed, Y. Y., & Deeks, E. (2015). [18F] Florbetaben: a review in β-amyloid PET imaging in cognitive impairment. CNS Drugs, 29(7), 605–613.

    CAS  PubMed  Google Scholar 

  • Sylvester, C. M., Shulman, G. L., Jack, A. I., & Corbetta, M. (2009). Anticipatory and stimulus-evoked blood oxygenation level-dependent modulations related to spatial attention reflect a common additive signal. Journal of Neuroscience, 29(34), 10671–10682.

    CAS  PubMed  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 267–288.

    Google Scholar 

  • Tu, P. C., Hsieh, J. C., Li, C. T., Bai, Y. M., & Su, T. P. (2012). Cortico-striatal disconnection within the cingulo-opercular network in schizophrenia revealed by intrinsic functional connectivity analysis: a resting fMRI study. NeuroImage, 59(1), 238–247.

    PubMed  Google Scholar 

  • Visser, P. J., Scheltens, P., Verhey, F. R., Schmand, B., Launer, L. J., Jolles, J., & Jonker, C. (1999). Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment. Journal of Neurology, 246(6), 477–485.

    CAS  PubMed  Google Scholar 

  • Wang, L., Zang, Y., He, Y., Liang, M., Zhang, X., Tian, L., Wu, T., Jiang, T., & Li, K. (2006). Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. NeuroImage, 31(2), 496–504.

    PubMed  Google Scholar 

  • Wang, Z., Childress, A. R., Wang, J., & Detre, J. A. (2007). Support vector machine learning-based fMRI data group analysis. NeuroImage, 36(4), 1139–1151.

    PubMed  Google Scholar 

  • Wang, Y., Fan, Y., Bhatt, P., & Davatzikos, C. (2010a). High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables. NeuroImage, 50(4), 1519–1535.

    PubMed  Google Scholar 

  • Wang, J., Zuo, X., & He, Y. (2010b). Graph-based network analysis of resting-state functional MRI. Frontiers in Systems Neuroscience, 4, 16.

    PubMed  PubMed Central  Google Scholar 

  • Wang, H., Nie, F., Huang, H., Risacher, S., Saykin, A. J., & Shen, L. (2011). Identifying AD-sensitive and cognition-relevant imaging biomarkers via joint classification and regression. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 115–123). Springer, Berlin, Heidelberg.

  • Wang, X. F., Jiang, Z., Daly, J. J., & Yue, G. H. (2012). A generalized regression model for region of interest analysis of fMRI data. NeuroImage, 59(1), 502–510.

    PubMed  Google Scholar 

  • Wu, T. T., Chen, Y. F., Hastie, T., Sobel, E., & Lange, K. (2009). Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics, 25(6), 714–721.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, K., & Zhang, D. (2015). Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sensors and Actuators B: Chemical, 212, 353–363.

    CAS  Google Scholar 

  • Zhang, D., Shen, D., & Alzheimer's Disease Neuroimaging Initiative. (2012). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. NeuroImage, 59(2), 895–907.

    PubMed  Google Scholar 

  • Zhang, Y., Kimberg, D. Y., Coslett, H. B., Schwartz, M. F., & Wang, Z. (2014). Multivariate lesion-symptom mapping using support vector regression. Human Brain Mapping, 35(12), 5861–5876.

    PubMed  PubMed Central  Google Scholar 

  • Zhu, X., Suk, H. I., & Shen, D. (2014). A novel multi-relation regularization method for regression and classification in AD diagnosis. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 401–408). Springer, Cham.

  • Zhu, X., Suk, H. I., Wang, L., Lee, S. W., Shen, D., & Alzheimer’s Disease Neuroimaging Initiative. (2017). A novel relational regularization feature selection method for joint regression and classification in AD diagnosis. Medical Image Analysis, 38, 205–214.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a GIST Research Institute (GRI) grant funded by the GIST in 2019. This work was also supported by the Bio & Medical Technology Development Program of the NRF funded by the Korean government, MSIT (NRF-2016M3A9E9941946), and the Original Technology Research Program for Brain Science of the NRF funded by the Korean government, MSIT (NRF-2014M3C7A1046041).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Ho Lee or Boreom Lee.

Ethics declarations

Declaration of Interest

none.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duc, N.T., Ryu, S., Qureshi, M.N.I. et al. 3D-Deep Learning Based Automatic Diagnosis of Alzheimer’s Disease with Joint MMSE Prediction Using Resting-State fMRI. Neuroinform 18, 71–86 (2020). https://doi.org/10.1007/s12021-019-09419-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-019-09419-w

Keywords

Navigation