Skip to main content
Log in

Towards Differential Connectomics with NeuroVIISAS

  • Software Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

The comparison of connectomes is an essential step to identify changes in structural and functional neuronal networks. However, the connectomes themselves as well as the comparisons of connectomes could be manifold. In most applications, comparisons of connectomes are applied to specific sets of data. In many studies collections of scripts are applied optimized for certain species (non-generic approaches) or diseases (control versus disease group connectomes). These collections of scripts have a limited functionality which do not support functional and topographic mappings of connectomes (hemispherical asymmetries, peripheral nervous system). The platform-independent and generic neuroVIISAS framework is built to circumvent limitations that come with variants of nomenclatures, connectivity lists and connectional hierarchies as well as restrictions to structural connectome analyses. A new analytical module is introduced into the framework to compare different types of connectomes and different representations of the same connectome within a unique software environment. As an example a differential analysis of the partial connectome of the laboratory rat that is based on virus tract tracing with the same regions of non-virus tract tracing has been performed. A relatively large connectional coherence between the two different techniques was found. However, some detected connections are described by virus tract-tracing only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alper, B., Bach, B., Riche, N.H., Isenberg, T., Fekete, J.-D. (2013). Weighted graph comparison techniques for brain connectivity analysis. In Proceeding CHI ’13 proceedings of the SIGCHI conference on human factors in computing systems (pp. 483–492).

    Chapter  Google Scholar 

  • Amico, E., Marinazzo, D., Di Perri, C., Heine, L., Annen, J., Martial, C., Dzemidzic, M., Kirsch, M., Bonhomme, V., Laureys, S. (2017). Mapping the functional connectome traits of levels of consciousness. Neuroimage, 148, 201–211.

    Article  PubMed  Google Scholar 

  • Anderle, M., Roy, S., Lin, H., Becker, C., Joho, K. (2004). Quantifying reproducibility for differential proteomics: noise analysis for protein liquid chromatography-mass spectrometry of human serum. Bioinformatics, 20, 3575–3582.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, P., De Barenne, J.C.D., Garol, H.W., McCulloch, W.S. (1940). Sensory cortex of chimpanzee. Journal of Neurophysiology, 3, 469–485.

    Article  Google Scholar 

  • Bajic, D., Craig, M.M., Borsook, D., Becerra, L. (2016). Probing intrinsic Resting-State networks in the infant rat brain. Frontiers in Behavioral Neuroscience, 10, 192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baker, S.T., Lubman, D.I., Yücel, M., Allen, N.B., Whittle, S., Fulcher, B.D., Zalesky, A., Fornito, A. (2015). Developmental changes in brain network hub connectivity in late adolescence. Journal of Neuroscience, 35(24), 9078–9087.

    Article  CAS  PubMed  Google Scholar 

  • Bakker, R., Wachtler, T., Diesmann, M. (2012). Cocomac 2.0 and the future of tract-tracing databases. Frontiers in Neuroinformatics, 27(6), 30.

    Google Scholar 

  • Beul, S.F., Grant, S., Hilgetag, C.C. (2015). A predictive model of the cat cortical connectome based on cytoarchitecture and distance. Brain Structure and Function, 220(6), 3167–3184.

    Article  PubMed  Google Scholar 

  • Bota, M., Dong, H.W., Swanson, L.W. (2005). Brain architecture management system. Neuroinformatics, 3(1), 15–48.

    Article  PubMed  Google Scholar 

  • Bota, M., Sporns, O., Swanson, L.W. (2015). Architecture of the cerebral cortical association connectome underlying cognition. Proceedings of the National Academy of Sciences of the United States of America, 112(16), E2093–E2101.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brandes, U., & Erlebach, T. (2005). Network analysis. Methodological foundations. LNCS 3418. Berlin: Springer.

    Google Scholar 

  • Brynildsen, J.K., Hsu, L.M., Ross, T.J., Stein, E.A., Yang, Y., Lu, H. (2017). Physiological characterization of a robust survival rodent fMRI method. Magnetic Resonance Imaging, 35, 54–60.

    Article  PubMed  Google Scholar 

  • Caeyenberghs, K., & Leemans, A. (2014). Hemispheric lateralization of topological organization in structural brain networks. Human Brain Mapping, 35(9), 4944–4957.

    Article  PubMed  PubMed Central  Google Scholar 

  • Callaway, E.M., & Luo, L. (2015). Monosynaptic circuit tracing with Glycoprotein-Deleted rabies viruses. Journal of Neuroscience, 35(24), 8979–8985.

    Article  CAS  PubMed  Google Scholar 

  • Cao, M., Shu, N., Cao, Q., Wang, Y., He, Y. (2014). Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder. Molecular Neurobiology, 50(3), 1111–1123.

    Article  CAS  PubMed  Google Scholar 

  • Chung, K., Wallace, J., Kim, S.Y., Kalyanasundaram, S., Andalman, A.S., Davidson, T.J., Mirzabekov, J.J., Zalocusky, K.A., Mattis, J., Denisin, A.K., Pak, S., Bernstein, H., Ramakrishnan, C., Grosenick, L., Gradinaru, V., Deisseroth, K. (2013). Structural and molecular interrogation of intact biological systems. Nature, 497(7449), 332–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collin, G., & van den Heuvel, M.P. (2013). The ontogeny of the human connectome: development and dynamic changes of brain connectivity across the life span. The Neuroscientist, 19(6), 616–628.

    Article  PubMed  CAS  Google Scholar 

  • Crossley, N.A., Fox, P.T., Bullmore, E.T. (2016). Meta-connectomics: human brain network and connectivity meta-analyses. Psychological Medicine, 46(5), 897–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai, Z., Yan, C., Li, K., Wang, Z., Wang, J., Cao, M., Lin, Q., Shu, N., Xia, M., Bi, Y., He, Y. (2015). Identifying and mapping connectivity patterns of brain network hubs in Alzheimer’s disease. Cerebral Cortex, 25(10), 3723–3742.

    Article  PubMed  Google Scholar 

  • Daianu, M., Jacobs, R.E., Weitz, T.M., Town, T.C., Thompson, P.M. (2015). Multi-shell hybrid diffusion imaging (HYDI) at 7 Tesla in tgf344-AD transgenic Alzheimer rats. PLoS One, 10(12), e0145205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Reus, M.A., & van den Heuvel, M.P. (2013). Rich club organization and intermodule communication in the cat connectome. Journal of Neuroscience, 33(32), 12929–12939.

    Article  CAS  PubMed  Google Scholar 

  • Dill, J., Earnshaw, R., Kasik, D., Vince, J., Wong, P.C. (2012). Expanding the frontiers of visual analytics. New York: Springer.

    Book  Google Scholar 

  • Ding, S.L., Royall, J.J., Sunkin, S.M., Ng, L., Facer, B.A., Lesnar, P., Guillozet-Bongaarts, A., McMurray, B., Szafer, A., Dolbeare, T.A., Stevens, A., Tirrell, L., Benner, T., Caldejon, S., Dalley, R.A., Dee, N., Lau, C., Nyhus, J., Reding, M., Riley, Z.L., Sandman, D., Shen, E., van der Kouwe, A., Varjabedian, A., Write, M., Zollei, L., Dang, C., Knowles, J.A., Koch, C., Phillips, J.W., Sestan, N., Wohnoutka, P., Zielke, H.R., Hohmann, J.G., Jones, A.R., Bernard, A., Hawrylycz, M.J., Hof, P.R., Fischl, B., Lein, E.S. (2016). Comprehensive cellular-resolution atlas of the adult human brain. Journal of Comparative Neurology, 524(16), 3127–3481.

    Article  Google Scholar 

  • Epp, J.R., Niibori, Y., Liz Hsiang, H.L., Mercaldo, V., Deisseroth, K., Josselyn, S.A., Frankland, P.W. (2015). Optimization of CLARITY for clearing whole-brain and other intact organs. eNeuro 2(3), ENEURO.0022-15.2015.

  • Felleman, D.J., & Van Essen, D.C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1–47.

    Article  CAS  PubMed  Google Scholar 

  • Fornito, A., Zalesky, A., Pantelis, C., Bullmore, E.T. (2012). Schizophrenia, neuroimaging and connectomics. NeuroImage, 62(4), 2296–2314.

    Article  PubMed  Google Scholar 

  • French, L., Liu, P., Marais, O., Koreman, T., Tseng, L., Lai, A., Pavlidis, P. (2015). Text mining for neuroanatomy using WhiteText with an upyeard corpus and a new web application. Frontiers in Neuroinformatics, 9, 13.

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Alcalde, F., García-López, F., Dopazo, J., Conesa, A. (2011). Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data. Bioinformatics, 27, 137–139.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen, C.R., & Sawchenko, P.E. (2016). An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons and terminals: Immunohistochemical localization of an axonally transported plant lectin, Phaseolus vulgaris-leucoagglutinin (PHA-l). Brain Research, 1645, 42–45.

    Article  CAS  PubMed  Google Scholar 

  • Gleicher, M., Albers, D., Walker, R., Jusufi, I., Hansen, C.D., Roberts, J.C. (2011). Visual comparison for information visualization. Information Visualization, 10(4), 289–309.

    Article  Google Scholar 

  • Gökdeniz, E., Özgür, A., Canbeyli, R. (2016). Automated neuroanatomical relation extraction: a linguistically motivated approach with a PVT connectivity graph case study. Frontiers in Neuroinformatics, 10, 39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong, Q., & He, Y. (2015). Depression, neuroimaging and connectomics: a selective overview. Biological Psychiatry, 77(3), 223–235.

    Article  PubMed  Google Scholar 

  • Gutman, D.A., Keifer, O.P., Magnuson, M.E., Choi, D.C., Majeed, W., Keilholz, S., Ressler, K.J. (2012). A DTI tractography analysis of infralimbic and prelimbic connectivity in the mouse using high-throughput MRI. NeuroImage, 63(2), 800–811.

    Article  PubMed  Google Scholar 

  • Hannawi, Y., & Stevens, R.D. (2016). Mapping the connectome following traumatic brain injury. Current Neurology and Neuroscience Reports, 16(5), 44.

    Article  PubMed  Google Scholar 

  • Harris, N.G., Verley, D.R., Gutman, B.A., Thompson, P.M., Yeh, H.J., Brown, J.A. (2016). Disconnection and hyper-connectivity underlie reorganization after TBI: a rodent functional connectomic analysis. Experimental Neurology, 277, 124–138.

    Article  CAS  PubMed  Google Scholar 

  • Heilingoetter, C.L., & Jensen, M.B. (2016). Histological methods for ex vivo axon tracing: a systematic review. Neurological Research, 38(7), 561–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helmstädter, M. (2013). Cellular-resolution connectomics: challenges of dense neural circuit reconstruction. Nature Methods, 10(6), 501–507.

    Article  CAS  Google Scholar 

  • Helmstädter, M., Briggman, K.L., Turaga, S.C., Jain, V., Seung, H.S., Denk, W. (2013). Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature, 500(7461), 168–174.

    Article  CAS  Google Scholar 

  • Hendricksen, R. (2015). Visualizing differences between brain networks. Eindhoven University of Technology, Department of Mathematics and Computer Science. Eindhoven, M.Sc. thesis.

  • Henriksen, S., Pang, R., Wronkiewicz, M. (2016). A simple generative model of the mouse mesoscale connectome. Elife, 5, e12366.

    Article  PubMed  PubMed Central  Google Scholar 

  • Herdin, M., Czink, N., Özcelik, H., Bonek, H. (2005). Correlation matrix distance a meaningful measure for evaluation of non-stationary MIMO channels. In IEEE Xplore conference vehicular technology conference (Vol. 1, pp. 136–140).

  • Hilgetag, C.C., Burns, G.A., O’Neill, M.A., Scannell, J.W., Young, M.P. (2000). Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 355(1393), 91–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jirsa, V.K., & McIntosh, A.R. (2007). Handbook of brain connectivity. Berlin: Springer.

    Book  Google Scholar 

  • Johnson, G.A., Badea, A., Brandenburg, J., Cofer, G., Fubara, B., Liu, S., Nissanov, J. (2010). Waxholm space: an image-based reference for coordinating mouse brain research. NeuroImage, 53(2), 365–372.

    Article  PubMed  Google Scholar 

  • Kebschull, M., Fittler, M.J., Demmer, R.T., Papapanou, P.N. (2017). Differential expression and functional analysis of high-throughput -omics data using open source tools. Methods in Molecular Biology, 1537, 327–345.

    Article  CAS  PubMed  Google Scholar 

  • Keifer, O.P., Gutman, D.A., Hecht, E.E., Keilholz, S.D., Ressler, K.J. (2015). A comparative analysis of mouse and human medial geniculate nucleus connectivity: a DTI and anterograde tracing study. NeuroImage, 105, 53–66.

    Article  PubMed  Google Scholar 

  • Kennedy, H., Van Essen, D.C., Christen, Y. (2016). Micro- Meso- and Macro-connectomics of the brain. Berlin: Springer.

    Book  Google Scholar 

  • Kobeissy, F.H., Guingab-Cagmat, J.D., Zhang, Z., Moghieb, A., Glushakova, O.Y., Mondello, S., Boutté, A. M., Anagli, J., Rubenstein, R., Bahmad, H., Wagner, A.K., Hayes, R.L., Wang, K.K. (2016). Neuroproteomics and systems biology approach to identify temporal biomarker changes post experimental traumatic brain injury in rats. Frontiers in Neurology, 7, 198.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koelbl, C., Helmstädter, M., Lübke, J., Feldmeyer, D. (2015). A barrel-related interneuron in layer 4 of rat somatosensory cortex with a high intrabarrel connectivity. Cerebral Cortex, 25(3), 713–725.

    Article  PubMed  Google Scholar 

  • Kuan, L., Li, Y., Lau, C., Feng, D., Bernard, A., Sunkin, S.M., Zeng, H., Dang, C., Hawrylycz, M., Ng, L. (2015). Neuroinformatics of the allen mouse brain connectivity atlas. Methods, 73, 4–17.

    Article  CAS  PubMed  Google Scholar 

  • Kuo, T.C., Tian, T.F., Tseng, Y.J. (2013). 3Omics: a web-based systems biology tool for analysis, integration and visualization of human transcriptomic, proteomic and metabolomic data. BMC Systems Biology, 7, 64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawhorn, C.M., Schomaker, R., Rowell, J.T., Rueppell, O. (2018). Simple comparative analyses of differentially expressed gene lists may overestimate gene overlap. Journal of Computational Biology, 25(6), 606–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, T.H., Miernicki, M.E., Telzer, E.H. (2017). Families that fire together smile together: Resting state connectome similarity and daily emotional synchrony in parent-child dyads. NeuroImage, 152, 31–37.

    Article  PubMed  Google Scholar 

  • Leonardi, N., Richiardi, J., Gschwind, M., Simioni, S., Annoni, J.M., Schluep, M., Vuilleumier, P., Van De Ville, D. (2013). Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest. NeuroImage, 83, 937– 950.

    Article  PubMed  Google Scholar 

  • Liang, X., Hsu, L.M., Lu, H., Sumiyoshi, A., He, Y., Yang, Y. (2018). The Rich-Club Organization in rat functional brain network to balance between communication cost and efficiency. Cerebral Cortex, 28(3), 924–935.

    Article  PubMed  Google Scholar 

  • Liu, Y.Y., Slotine, J.J., Barabási, A.L. (2011). Controllability of complex networks. Nature, 473(7346), 167–173.

    Article  CAS  PubMed  Google Scholar 

  • Livet, J., Weissman, T.A., Kang, H., Draft, R.W., Lu, J., Bennis, R.A., Sanes, J.R., Lichtman, J.W. (2007). Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature, 450(7166), 56–62.

    Article  CAS  PubMed  Google Scholar 

  • Ma, Y., Hamilton, C., Zhang, N. (2017). Dynamic connectivity patterns in conscious and unconscious brain. Brain Connect, 7(1), 1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mesulam, M.-M. (1982). Tracing neural connections with horseradish peroxidase. New York: Wiley.

    Google Scholar 

  • Newman, M.E.J. (2010). Networks. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Oberländer, M., de Kock, C.P., Bruno, R.M., Ramirez, A., Meyer, H.S., Dercksen, V.J., Helmstädter, M., Sakmann, B. (2012). Cell type-specific three-dimensional structure of thalamocortical circuits in a column of rat vibrissal cortex. Cerebral Cortex, 22(10), 2375–2391.

    Article  Google Scholar 

  • Oh, S.W., Harris, J.A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau, C., Kuan, L., Henry, A.M., Mortrud, M.T., Ouellette, B., Nguyen, T.N., Sorensen, S.A., Slaughterbeck, C.R., Wakeman, W., Li, Y., Feng, D., Ho, A., Nicholas, E., Hirokawa, K.E., Bohn, P., Joines, K.M., Peng, H., Hawrylycz, M.J., Phillips, J.W., Hohmann, J.G., Wohnoutka, P., Gerfen, C.R., Koch, C., Bernard, A., Dang, C., Jones, A.R., Zeng, H. (2014). A mesoscale connectome of the mouse brain. Nature, 508(7495), 207–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paasonen, J., Salo, R.A., Huttunen, J.K., Gröhn, O. (2016). Resting-state functional MRI as a tool for evaluating brain hemodynamic responsiveness to external stimuli in rats. Magnetic Resonance in Medicine, 78 (3), 1136–1146.

    Article  PubMed  CAS  Google Scholar 

  • Papp, E.A., Leergaard, T.B., Calabrese, E., Johnson, G.A., Bjaalie, J.G. (2014). Waxholm Space atlas of the Sprague Dawley rat brain. NeuroImage, 97, 374–386.

    Article  PubMed  Google Scholar 

  • Parr-Brownlie, L.C., Bosch-Bouju, C., Schoderboeck, L., Sizemore, R.J., Abraham, W.C., Hughes, S.M. (2015). Lentiviral vectors as tools to understand central nervous system biology in mammalian model organisms. Frontiers in Molecular Neuroscience, 8, 14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paxinos, G, & Watson, C. (2014). The rat brain in stereotaxic coordinates. 7 Aufl. San Diego: Academic Press.

    Google Scholar 

  • Paxinos, G., Watson, C., Calabrese, E., Badea, A., Johnson, G.A. (2015). MRI/DTI Atlas of the rat brain. San Diego: Academic Press.

    Google Scholar 

  • Preti, M.G., Bolton, T.A., Van De Ville, D. (2016). The dynamic functional connectome: state-of-the-art and perspectives. Neuroimage, S1053-8119(16), 30788–1.

    Google Scholar 

  • Prettejohn, B.J., Berryman, M.J., McDonnell, M.D. (2011). Methods for generating complex networks with selected structural properties for simulations: a review and tutorial for neuroscientists. Frontiers in Computational Neuroscience, 5, 11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Richardet, R., Chappelier, J.C., Telefont, M., Hill, S. (2015). Large-scale extraction of brain connectivity from the neuroscientific literature. Bioinformatics, 31(10), 1640–1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. NeuroImage, 52, 1059–1069.

    Article  PubMed  Google Scholar 

  • Rumple, A., McMurray, M., Johns, J., Lauder, J., Makam, P., Radcliffe, M., Oguz, I. (2013). 3-dimensional diffusion tensor imaging (DTI) atlas of the rat brain. PLoS One, 8(7), e67334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scannell, J.W., & Young, M.P. (1993). The connectional organization of neural systems in the cat cerebral cortex. Current Biology, 3(4), 191–200.

    Article  CAS  PubMed  Google Scholar 

  • Scannell, J.W., Blakemore, C., Young, M.P. (1995). Analysis of connectivity in the cat cerebral cortex. Journal of Neuroscience, 15(2), 1463–1483.

    Article  CAS  PubMed  Google Scholar 

  • Scannell, J.W., Burns, G.A., Hilgetag, C.C., O’Neil, M.A., Young, M.P. (1999). The connectional organization of the cortico-thalamic system of the cat. Cerebral Cortex, 9(3), 277–299.

    Article  CAS  PubMed  Google Scholar 

  • Schmitt, O., & Eipert, P. (2012). NeuroVIISAS: approaching multiscale simulation of the rat connectome. Neuroinformatics, 10(3), 243–267.

    Article  PubMed  Google Scholar 

  • Schmitt, O., Eipert, P., Philipp, K., Kettlitz, R., Füllen, G., Wree, A. (2012). The intrinsic connectome of the rat amygdala. Front Neural Circuits, 6, 81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmitt, O., Eipert, P., Kettlitz, R., Lemann, F., Wree, A. (2016). The connectome of the basal ganglia. Brain Structure and Function, 221(2), 753–814.

    Article  PubMed  Google Scholar 

  • Schmitt, O., Badurek, S., Liu, W., Wang, Y., Rabiller, G., Kanoke, A., Eipert, P., Liu, J. (2017). Prediction of regional functional impairment following experimental stroke via connectome analysis. Science Reports, 7, 46316.

    Article  CAS  Google Scholar 

  • Shen, X., Finn, E.S., Scheinost, D., Rosenberg, M.D., Chun, M.M., Papademetris, X., Constable, R.T. (2017). Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nature Protocols, 12(3), 506–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shipp, S. (2005). The importance of being agranular: a comparative account of visual and motor cortex. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 360(1456), 797–814.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simoff, S.J., Böhlen, M.H., Mazeika, A. (2008). Visual data mining. Theory, techniques and tools for visual analytics. Lecture notes in computer science 4404. London: Springer.

    Google Scholar 

  • Sizemore, R.J., Seeger-Armbruster, S., Hughes, S.M., Parr-Brownlie, L.C. (2016). Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology. Journal of Neurophysiology, 115(4), 2124–2146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, J.B., Liang, Z., Watson, G.D., Alloway, K.D., Zhang, N. (2016). Interhemispheric resting-state functional connectivity of the claustrum in the awake and anesthetized states. Brain Structure and Function, 222(5), 2041–2058.

    Article  PubMed  Google Scholar 

  • Sporns, O. (2011). Networks of the brain. Cambridge: The MIT Press.

    Google Scholar 

  • Sporns, O. (2012). Discovering the human connectome. Cambridge: The MIT Press.

    Book  Google Scholar 

  • Stephan, K.E., Zilles, K., Kötter, R. (2000). Coordinate-independent mapping of structural and functional data by objective relational transformation (ORT). Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 355(1393), 37–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephan, K.E., Kamper, L., Bozkurt, A., Burns, G.A., Young, M.P., Kötter, R. (2001). Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 356(1412), 1159–1186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugar, J., Witter, M.P., van Strien, N.M., Cappaert, N.L.M. (2011). The retrosplenial cortex: intrinsic connectivity and connections with the (para)hippocampal region in the rat. An interactive connectome. Frontiers in Neuroinformatics, 5, 7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sukhinin, D.I., Engel, A.K., Manger, P., Hilgetag, C.C. (2016). Building the ferretome. Frontiers in Neuroinformatics, 10(10), 16.

    PubMed  PubMed Central  Google Scholar 

  • Sun, Y., Lee, R., Chen, Y., Collinson, S., Thakor, N., Bezerianos, A., Sim, K. (2015). Progressive gender differences of structural brain networks in healthy adults: a longitudinal, diffusion tensor imaging study. PLoS One, 10(3), e0118857.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Swanson, L.W. (2004). Brain maps: Structure of the rat brain, 3rd Edn. Amsterdam: Elsevier.

    Google Scholar 

  • Swanson, L.W. (2014). Neuroanatomical terminology. A lexicon of classical origins and historical foundations. Oxford: Oxford University Press.

    Google Scholar 

  • Swanson, L.W., & Bota, M. (2010). Foundational model of structural connectivity in the nervous system with a schema for wiring diagrams, connectome, and basic plan architecture. Proceedings of the National Academy of Sciences of the United States of America, 107(48), 20610–20617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson, L.W., Sporns, O., Hahn, J.D. (2016). Network architecture of the cerebral nuclei (basal ganglia) association and commissural connectome. Proceedings of the National Academy of Sciences of the United States of America, 113(40), E5972–E5981.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Symons, S., & Nieselt, K. (2011). MGV: a generic graph viewer for comparative omics data. Bioinformatics, 27, 2248–2255.

    Article  CAS  PubMed  Google Scholar 

  • Tomer, R., Ye, L., Hsueh, B., Deisseroth, K. (2014). Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nature Protocols, 9(7), 1682–1697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ugolini, G. (2011). Rabies virus as a transneuronal tracer of neuronal connections. Advances in Virus Research, 79, 165–202.

    Article  CAS  PubMed  Google Scholar 

  • van den Heuvel, M.P., Sporns, O., Collin, G., Scheewe, T., Mandl, R.C., Cahn, W., Goñi, J., Hulshoff Pol, H.E., Kahn, R.S. (2012). Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiatry, 70(8), 783–792.

    Article  Google Scholar 

  • van den Heuvel, M.P., Scholtens, L.H., de Reus, M.A. (2016). Topological organization of connectivity strength in the rat connectome. Brain Structure and Function, 221, 1719– 1736.

    Article  PubMed  Google Scholar 

  • Vasques, X., Richardet, R., Hill, S.L., Slater, D., Chappelier, J.C., Pralong, E., Bloch, J., Draganski, B., Cif, L. (2015). Automatic target validation based on neuroscientific literature mining for tractography. Frontiers in Neuroanatomy, 9, 66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verbeeck, N., Spraggins, J.M., Murphy, M.J., Wang, H.D., Deutch, A.Y., Caprioli, R.M., de Plas, R.V. (2017). Connecting imaging mass spectrometry and magnetic resonance imaging-based anatomical atlases for automated anatomical interpretation and differential analysis. Biochimica et Biophysica Acta, S1570-9639(17), 30040–30047.

    Google Scholar 

  • Vértes, P.E., & Bullmore, E.T. (2015). Annual research review: Growth connectomics - the organization and reorganization of brain networks during normal and abnormal development. Journal of Child Psychology and Psychiatry, 56(3), 299–320.

    Article  PubMed  Google Scholar 

  • Wanner, A.A., Kirschmann, M.A., Genoud, C. (2015). Challenges of microtome-based serial block-face scanning electron microscopy in neuroscience. Journal de Microscopie, 259(2), 137–142.

    Article  CAS  Google Scholar 

  • Wheeler, D.W., White, C.M., Rees, C.L., Komendantov, A.O., Hamilton, D.J., Ascoli, G.A. (2015). Hippocampome.org: a knowledge base of neuron types in the rodent hippocampus. Elife, 4, e09960.

    Article  PubMed  PubMed Central  Google Scholar 

  • White, J.G., Southgate, E., Thomson, J.N., Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 314(1165), 1–340.

    Article  CAS  PubMed  Google Scholar 

  • Wille, M., Schümann, A., Wree, A., Kreutzer, M., Glocker, M.O., Mutzbauer, G., Schmitt, O. (2015a). The proteome profiles of the cerebellum of juvenile, adult and aged rats - an ontogenetic study. International Journal of Molecular Sciences, 16(9), 21454– 21485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wille, M., Schümann, A., Kreutzer, M., Glocker, M.O., Wree, A., Mutzbauer, G., Schmitt, O. (2015b). The proteome profiles of the olfactory bulb of juvenile, adult and aged rats - an ontogenetic study. Proteome Science, 15(13), 8.

    Article  CAS  Google Scholar 

  • Wille, M., Schümann, A., Kreutzer, M., Glocker, M.O., Wree, A., Mutzbauer, G., Schmitt, O. (2017). Differential proteomics of the cerebral cortex of juvenile, adult and aged rats - an ontogenetic study. Journal of Proteomics and Bioinformatics, in press.

  • Wouterlood, F.G., Bloem, B., Mansvelder, H.D., Luchicchi, A., Deisseroth, K. (2014). A fourth generation of neuroanatomical tracing techniques: exploiting the offspring of genetic engineering. Journal of Neuroscience Methods, 235, 331–348.

    Article  PubMed  Google Scholar 

  • Xia, M., & He, Y. (2017). Functional connectomics from a “big data” perspective. Neuroimage, S1053-8119 (17), 30142–8.

    Google Scholar 

  • Yau, N. (2013). Data points: visualizing that means something. Indianapolis: Wiley.

    Google Scholar 

  • Young, M.P. (1992). Objective analysis of the topological organization of the primate cortical visual system. Nature, 358(6382), 152–155.

    Article  CAS  PubMed  Google Scholar 

  • Young, M.P., Scannell, J.W., Burns, G.A., Blakemore, C. (1994). Analysis of connectivity: neural systems in the cerebral cortex. Reviews in the Neurosciences, 5(3), 227–250.

    Article  CAS  PubMed  Google Scholar 

  • Zaborszky, L., Wouterlood, F.G., Lancietgo, J.L. (2006). Neuroanatomical tract-tracing 3. Molecules, neurons and systems. Singerpore: Springer.

    Book  Google Scholar 

  • Zador, A.M., Dubnau, J., Oyibo, H.K., Zhan, H., Cao, G., Peikon, I.D. (2012). Sequencing the connectome. PLoS Biology, 10(10), e1001411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaslavsky, I., Baldock, R.A., Boline, J. (2014). Cyberinfrastructure for the digital brain: spatial standards for integrating rodent brain atlases. Frontiers in Neuroinformatics, 8, 74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng, T., Chen, H., Fakhry, A., Hu, X., Liu, T., Ji, S. (2015). Allen mouse brain atlases reveal different neural connection and gene expression patterns in cerebellum gyri and sulci. Brain Structure and Function, 220(5), 2691–703.

    Article  CAS  PubMed  Google Scholar 

  • Zuo, X.N., He, Y., Betzel, R.F., Colcombe, S., Sporns, O., Milham, M.P. (2017). Human connectomics across the life span. Trends in Cognitive Sciences, 21(1), 32–45.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Heidi Schumann and Christian Tominski (Computer Graphics, Institute of Computer Science, University of Rostock) for their helpful advice on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Schmitt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwanke, S., Jenssen, J., Eipert, P. et al. Towards Differential Connectomics with NeuroVIISAS. Neuroinform 17, 163–179 (2019). https://doi.org/10.1007/s12021-018-9389-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-018-9389-6

Keywords

Navigation