Skip to main content

Advertisement

Log in

Phytochemicals in thyroid cancer: analysis of the preclinical studies

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

In the search for novel effective compounds to use in thyroid cancer (TC) unresponsive to current treatment, attention has recently focused on plant-derived compounds with anticancer activity. In this review, we discuss the preclinical studies demonstrating phytochemical activity against thyroid cancer cells.

Results/Conclusions

In particular, we describe their antiproliferative properties or ability to re-induce iodine retention, thus supporting their potential use as single agents or adjuvants in radioiodine-resistant thyroid cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bulotta, M. Celano, G. Costante, D. Russo, Novel therapeutic options for radioiodine refractory thyroid cancer: re-differentiation and beyond. Curr. Opin. Oncol. 32, 13–19 (2020)

    Article  CAS  PubMed  Google Scholar 

  2. C. Durante, N. Haddy, E. Baudin, S. Leboulleux, D. Hartl, J.P. Travagli, B. Caillou, M. Ricard, J.D. Lumbroso, F. De Vathaire, M. Schlumberger, Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J. Clin. Endocrinol. Metab. 91, 2892–2899 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. S. Wächter, A. Wunderlich, B.H. Greene, S. Roth, M. Elxnat, S.A. Fellinger, F.A. Verburg, M. Luster, D.K. Bartsh, P. Di Fazio, Selumetinib activity in thyroid cancer cells: modulation of sodium iodide symporter and associated miRNAs. Int. J. Mol. Sci. 19(7), 2077 (2018)

    Article  PubMed Central  Google Scholar 

  4. M.E. Cabanillas, M. Ryder, C. Jimenez, Targeted therapy for advanced thyroid cancer: kinase inhibitors and beyond. Endocr. Rev. 40(6), 1573–1604 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  5. S. Bulotta, M. Celano, G. Costante, D. Russo, Emerging strategies for managing differentiated thyroid cancers refractory to radioiodine. Endocrine 52, 214–221 (2016)

    Article  CAS  PubMed  Google Scholar 

  6. G.E. Naoum, M. Morkos, B. Kim, W. Arafat, Novel targeted therapies and immunotherapy for advanced thyroid cancers. Mol. Cancer 17(1), 51 (2018)

    Article  PubMed  Google Scholar 

  7. A. Jayarangaiah, G. Sidhu, J. Brown, O. Barrett-Campbell, G. Bahtiyar, I. Youssef, S. Arora, S. Skwiersky, S. McFarlane, Therapeutic options for advanced thyroid cancer. Int. J. Clin. Endocrinol. Metab. 5(1), 26–34 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  8. R. Kotecha, A. Takami, J.L. Espinoza, Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence. Oncotarget 7(32), 52517–52529 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  9. A. Ranjan, S. Ramachandran, N. Gupta, I. Kaushik, S. Wright, S. Srivastava, H. Das, S. Srivastava, S. Prasad, S.K. Srivastava, Role of phytochemicals in cancer prevention. Int. J. Mol. Sci. 20(20), 4981 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  10. H.J. Shin, K.A. Hwang, K.C. Choi, Antitumor effect of various phytochemicals on diverse types of thyroid cancers. Nutrients 11(1), 125 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  11. F. Pistollato, M. Masias, P. Agudo, F. Giampieri, M. Battino, Effects of phytochemicals on thyroid function and their possible role in thyroid disease. Ann. N. Y. Acad. 1443(1), 3–19 (2019)

    Article  Google Scholar 

  12. V. Neveu, J. Perez-Jimenez, F. Vos, V. Crespy, L. du Chaffaut, L. Mennen, C. Knox, R. Eisner, J. Cruz, D. Wishart, A. Scalbert, Phenol-explorer: an online comprehensive database on polyphenol contents in foods. Database 2010, bap024 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. Rauf, M. Imran, M.S. Butt, M. Nadeem, D.G. Peters, M.S. Mubarak, Resveratrol as an anti-cancer agent: a review. Crit. Rev. Food Sci. Nutr. 58, 1428–1447 (2018)

    Article  PubMed  Google Scholar 

  14. X.M. Yu, R. Jaskula-Sztul, K. Ahmed, A.D. Harrison, M. Kunnimalaiyaan, H. Chen, Resveratrol induces differentiation markers expression in anaplastic thyroid carcinoma via activation of Notch1 signaling and suppresses cell growth. Mol. Cancer Ther. 12(7), 1276–1287 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Y.T. Li, X.T. Tian, M.L. Wu, X. Zheng, Q.Y. Kong, X.X. Cheng, G.W. Zhu, J. Liu, H. Li, Resveratrol suppresses the growth and enhances retinoic acid sensitivity of anaplastic thyroid cancer cells. Int. J. Mol. Sci. 19(4), 1030 (2018)

    Article  PubMed Central  Google Scholar 

  16. L. Allegri, F. Rosignolo, C. Mio, S. Filetti, F. Baldan, G. Damante, Effects of nutraceuticals on anaplastic thyroid cancer cells. J. Cancer Res. Clin. Oncol. 144, 285–294 (2018)

    Article  CAS  PubMed  Google Scholar 

  17. J. Wu, Y.T. Li, X.T. Tian, Y.S. Liu, M.L. Wu, P.N. Li, J. Liu, STAT3 signaling statuses determine the fate of resveratrol-treated anaplastic thyroid cancer cells. Cancer Biomark. 27, 461–469 (2020)

    Article  CAS  PubMed  Google Scholar 

  18. G. Xu, J. Chen, J. Wang, J. Xiao, N. Zhang, Y. Chen, H. Yu, G. Wang, Y. Zhao, Resveratrol inhibits the tumorigenesis of follicular thyroid cancer via ST6GAL2-regulated activation of the Hippo signaling pathway. Mol. Ther. Oncolytics 16, 124–133 (2020)

    Article  CAS  PubMed  Google Scholar 

  19. A. Giordano, G. Tommonaro, Curcumin and cancer. Nutrients 11(10), 2376 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  20. L. Zhang, X. Cheng, Y. Gao, J. Bao, H. Guan, R. Lu, H. Yu, Q. Xu, Y. Sun, Induction of ROS-independent DNA damage by curcumin leads to G2/M cell cycle arrest and apoptosis in human papillary thyroid carcinoma BCPAP cells. Food Funct. 7, 315–325 (2016)

    Article  CAS  PubMed  Google Scholar 

  21. S. Schwertheim, F. Wein, K. Lennartz, K. Worm, K.W. Schmid, Curcumin induces G2/M arrest, apoptosis, NF-kB inhibition, and expression of differentiation genes in thyroid carcinoma cells. J. Cancer Res. Clin. Oncol. 143(7), 1143–1154 (2017)

    Article  CAS  PubMed  Google Scholar 

  22. A. Perna, A.D. Luca, A. Adelfi, L. Pasquale, B. Varriale, T. Esposito, Effects of different extracts of curcumin on TPC1 papillary thyroid cancer cell line. BMC Complement. Altern. Med. 18(1), 63 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  23. T. Esposito, A. Lucariello, E. Hay, M. Contieri, P. Tammaro, B. Varriale, G. Guerra, A. De Luca, A. Perna, Effects of curcumin and its adjuvant on TPC1 thyroid cell line. Chem. Biol. Interact. 305, 112–118 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. A.Q. Khan, E.I. Ahmed, N. Elareer, H. Fathima, K.S. Prabhu, K.S. Siveen, M. Kulinski, F. Azizi, S. Dermime, A. Ahmad, M. Steinhoff, S. Uddin, Curcumin-mediated apoptotic cell death in papillary thyroid cancer and cancer stem-like cells through targeting of the JAK/STAT3 signaling pathway. Int. J. Mol. Sci. 21(2), 438 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  25. L. Zhang, X. Cheng, S. Xu, J. Bao, X. Yu, Curcumin induces endoplasmic reticulum stress-associated apoptosis in human papillary thyroid carcinoma BCPAP cells via disruption of intracellular calcium homeostasis. Medicine 97(24), e11095 (2018)

    Article  CAS  PubMed  Google Scholar 

  26. C.Y. Zhang, L. Zhang, H.X. Yu, J.D. Bao, Z. Sun, R.R. Lu, Curcumin inhibits invasion and metastasis in K1 papillary thyroid cancer cells. Food Chem. 139, 1021–1028 (2013)

    Article  CAS  PubMed  Google Scholar 

  27. C.Y. Zhang, L. Zhang, H.X. Yu, J.D. Bao, R.R. Lu, Curcumin inhibits the metastasis of k1 papillary thyroid cancer cells via modulating e-cadherin and matrix metalloproteinase-9 expression. Biotechnol. Lett. 35, 995–1000 (2013)

    Article  CAS  PubMed  Google Scholar 

  28. C. Tan, L. Zhang, X. Cheng, X.F. Lin, R.R. Lu, J.D. Bao, H.X. Yu, Curcumin inhibits hypoxia-induced migration in k1 papillary thyroid cancer cells. Exp. Biol. Med. 240, 925–935 (2015)

    Article  CAS  Google Scholar 

  29. L. Zhang, X. Cheng, Y. Gao, C. Zhang, J.D. Bao, X. Guan, H. Yu, R. Lu, Q. Xu, Y. Sun, Curcumin inhibits metastasis in human papillary thyroid carcinoma BCPAP cells via down-regulation of the TGF-beta/Smad2/3 signaling pathway. Exp. Cell. Res. 341, 157–165 (2016)

    Article  CAS  PubMed  Google Scholar 

  30. X. Xu, J. Qin, W. Liu, Curcumin inhibits the invasion of thyroid cancer cells via down-regulation of pi3k/akt signaling pathway. Gene 546, 226–232 (2014)

    Article  CAS  PubMed  Google Scholar 

  31. M. Russo, G.L. Russo, M. Daglia, P.D. Kasi, S. Ravi, S.F. Nabavi, S.M. Nabavi, Understanding genistein in cancer: The “good” and the “bad” effects: a review. Food Chem. 196, 589–600 (2016)

    Article  CAS  PubMed  Google Scholar 

  32. V. Mukund, D. Mukund, V. Sharma, M. Mannarapu, A. Alam, Genistein: Its role in metabolic diseases and cancer. Crit. Rev. Oncol. Hematol. 119, 13–22 (2017)

    Article  PubMed  Google Scholar 

  33. S.M. Ferrari, A. Antonelli, P. Guidi, M. Bernardeschi, V. Scarcelli, P. Fallahi, G. Frenzilli, Genotoxicity evaluation of the soybean isoflavonegenistein in human papillary thyroid cancer cells. Study of its potential use in thyroid cancer therapy. Nutr. Cancer 71(8), 1335–1344 (2019)

    Article  CAS  PubMed  Google Scholar 

  34. C. Zhang, B. Lv, C. Yi, X. Cui, S. Sui, X. Li, M. Qi, C. Hao, B. Han, Z. Liu, Genistein inhibits human papillary thyroid cancer cell detachment, invasion and metastasis. J. Cancer 10(3), 737–748 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. A.D. Khwairakpam, D. Bordoloi, K.K. Thakur, J. Monisha, F. Arfuso, G. Seth, S. Mishra, A.P. Kumar, A.B. Kunnumakkara, Possible use of Punica granatum (Pomegranate) in cancer therapy. Pharmacol. Res. 133, 53–64 (2018)

    Article  CAS  PubMed  Google Scholar 

  36. X. Cheng, X. Yao, S. Xu, J. Pan, H. Yu, J. Bao, H. Guan, R. Lu, L. Zhang, Punicalagin induces senescent growth arrest in human papillary thyroid carcinoma BCPAP cells via NF-kB signaling pathway. Biomed. Pharmacother. 103, 490–498 (2018)

    Article  CAS  PubMed  Google Scholar 

  37. X. Cheng, Y. Gao, X. Yao, H. Yu, J. Bao, H. Guan, Y. Sun, L. Zhang, Punicalagin induces apoptosis-independent autophagic cell death in human papillary thyroid carcinoma BCPAP cells. RSC Adv. 6(72), 68485–68493 (2016)

    Article  CAS  Google Scholar 

  38. X. Yao, X. Cheng, L. Zhang, H. Yu, J. Bao, H. Guan, R. Lu, Punicalagin from pomegranate promotes human papillary thyroid carcinoma BCPAP cell death by triggering ATM-mediated DNA damage response. Nutr. Res. 47, 63–71 (2017)

    Article  CAS  PubMed  Google Scholar 

  39. Y. Li, T. Ye, F. Yang, M. Hu, L. Liang, H. He, Z. Li, A. Zeng, Y. Li, Y. Yao, Y. Xie, Z. An, S. Li, Punica granatum (pomegranate) peel extract exerts potent antitumor and anti-metastasis activity in thyroid cancer. RSC Adv. 6(87), 84523–84535 (2016)

    Article  CAS  Google Scholar 

  40. S.M. Tang, X.T. Deng, J. Zhou, Q.P. Li, X.X. Ge, L. Miao, Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed. Pharmacother. 121, 109604 (2020)

    Article  CAS  PubMed  Google Scholar 

  41. E. Mutlu Altundağ, T. Kasac, A.M. Yılmaz, B. Karademir, S. Koçtürk, Y. Taga, A.S. Yalçın, Quercetin-induced cell death in human papillary thyroid cancer (B-CPAP) cells. J. Thyroid Res. 2016, 9843675 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  42. C.S. Yang, H. Wang, Cancer preventive activities of tea catechins. Molecules 21(12), 1679 (2016)

    Article  PubMed Central  Google Scholar 

  43. A. Negri, V. Naponelli, F. Rizzi, S. Bettuzzi, Molecular targets of epigallocatechin-gallate (EGCG): a special focus on signal transduction and cancer. Nutrients 10(12), 1936 (2018)

    Article  PubMed Central  Google Scholar 

  44. T. Li, N. Zhao, J. Lu, Q. Zhu, X. Liu, F. Hao, X. Jiao, Epigallocatechin gallate (EGCG) suppresses epithelial-Mesenchymal transition (EMT) and invasion in anaplastic thyroid carcinoma cells through blocking of TGF-β1/Smad signaling pathways. Bioengineered 10(1), 282–291 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. D. Wu, Z. Liu, J. Li, Q. Zhang, P. Zhong, T. Teng, M. Chen, Z. Xie, A. Ji, Y. Li, Epigallocatechin-3-gallate inhibits the growth and increases the apoptosis of human thyroid carcinoma cells through suppression of EGFR/RAS/RAF/MEK/ ERK signaling pathway. Cancer Cell Int. 19, 43 (2019)

    Article  PubMed  Google Scholar 

  46. Y. Gao, S.A. Snyder, J.N. Smith, Y.C. Chen, Anticancer properties of baicalein: a review. Med. Chem. Res. 25(8), 1515–1523 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. M. Wang, S. Qiu, J. Qin, Baicalein induced apoptosis and autophagy of undifferentiated thyroid cancer cells by the ERK/PI3K/Akt pathway. Am. J. Transl. Res. 11(6), 3341–3352 (2019)

    CAS  PubMed  Google Scholar 

  48. L. Zhang, X. Cheng, Y. Gao, J. Zheng, Q. Xu, Y. Sun, H. Guan, H. Yu, Z. Sun, Apigenin induces autophagic cell death in human papillary thyroid carcinoma BCPAP cells. Food Funct. 6(11), 3464–3472 (2015)

    Article  CAS  PubMed  Google Scholar 

  49. F. Visioli, E. Bernardini, Extra virgin olive oil’s polyphenols: biological activities. Curr. Pharm. Des. 17, 786–804 (2011)

    Article  CAS  PubMed  Google Scholar 

  50. S. Bulotta, M. Oliverio, D. Russo, A. Procopio, Chapter 156: Biological activity of oleuropein and its derivatives. in Natural Products, eds. by K.G. Ramawat, J.M. Merillon (Springer-Verlag Berlin Heidelberg (2013), p. 3605–3638

  51. M. Celano, V. Maggisano, S.M. Lepore, D. Russo, S. Bulotta, Secoiridoids of olive and derivatives as potential coadjuvant drugs in cancer: a critical analysis of experimental studies. Pharmacol. Res. 142, 77–86 (2019)

    Article  CAS  PubMed  Google Scholar 

  52. S. Bulotta, R. Corradino, M. Celano, J. Maiuolo, M. D’Agostino, M. Oliverio, A. Procopio, S. Filetti, D. Russo, Antioxidant and antigrowth action of peracetylated oleuropein in thyroid cancer cells. J. Mol. Endocrinol. 51(1), 181–189 (2013)

    Article  CAS  PubMed  Google Scholar 

  53. G. Toteda, S. Lupinacci, D. Vizza, R. Bonofiglio, E. Perri, M. Bonofiglio, D. Lofaro, A. La Russa, F. Leone, P. Gigliotti, R.A. Cifarelli, A. Perri, High doses of hydroxytyrosol induce apoptosis in papillary and follicular thyroid cancer cell. J. Endocrinol. Invest. 40(2), 153–162 (2017)

    Article  CAS  PubMed  Google Scholar 

  54. W. Liang, Y. Lai, M. Zhu, S. Huang, W. Feng, X. Gu, Combretastatin A4 regulates proliferation, migration, invasion, and apoptosis of thyroid cancer cells via PI3K/Akt signaling pathway. Med. Sci. Monit. 22, 4911–4917 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. S.J. Hosseinimehr, S.A. Hosseini, Radiosensitive effect of curcumin on thyroid cancer cell death induced by radioiodine-131. Interdiscip. Toxicol. 7, 85–88 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  56. S. Schwertheim, F. Wein, K. Lennartz, K. Worm, K.W. Schmid, S.Y. Sheu-Grabellus, Curcumin induces G2/M arrest, apoptosis, NF-kappaB inhibition, and expression of differentiation genes in thyroid carcinoma cells. J. Cancer Res. Clin. Oncol. 143, 1143–1154 (2017)

    Article  CAS  PubMed  Google Scholar 

  57. H.J. Kang, Y.K. Youn, M.K. Hong, L.S. Kim, Antiproliferation and redifferentiation in thyroid cancer cell lines by polyphenol phytochemicals. J. Korean Med. Sci. 26, 893–899 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. A. Lakshmanan, D. Scarberry, J. Green, X. Zhang, S. Selmi-Ruby, S.M. Jhiang, Modulation of thyroidal radioiodide uptake by oncological pipeline inhibitors and Apigenin. Oncotarget 6, 31792–31804 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  59. J.M.P. Ferreira de Oliveira, C. Santos, E. Fernandes, Therapeutic potential of hesperidin and its aglycone hesperetin: cell cycle regulation and apoptosis induction in cancer models. Phytomedicine 73, 152887 (2020)

    Article  CAS  PubMed  Google Scholar 

  60. P.N. Patel, X.M. Yu, R. Jaskula-Sztul, H. Chen, Hesperetin activates the Notch1 signaling cascade, causes apoptosis, and induces cellular differentiation in anaplastic thyroid cancer. Ann. Surg. Oncol. 21(4), 497–504 (2014)

    Article  PubMed Central  Google Scholar 

  61. L.S. Chua, A review on plant-based rutin extraction methods and its pharmacological activities. Ethnopharmacol 150(3), 805–817 (2013)

    Article  CAS  Google Scholar 

  62. C.F.L. Gonçalves, M.C. Santos, M.G. Ginabreda, R.S. Fortunato, D.P. Carvalho, A.C.Freitas Ferreira, Flavonoid rutin increases thyroid iodide uptake in rats. PLoS ONE 8(9), e73908 (2013).

    Article  PubMed  Google Scholar 

  63. C.F.L. Goncalves, M.L. De Freitas, R.S. Fortunato, L.M. Alves, D.P. Carvalho, A.C. Freitas Ferrera, Rutin scavenges reactive oxygen species, inactivates 5’-adenosine monophosphate-activated protein kinase, and increases sodium-iodide symporter expression in thyroid PCCL3 cells. Thyroid 28(2), 265–275 (2018)

    Article  CAS  PubMed  Google Scholar 

  64. P. Bian, W. Hu, C. Liu, L. Li, Resveratrol potentiates the anti-tumor effects of rapamycin in papillary thyroid cancer: PI3K/AKT/mTOR pathway involved. Arch. Biochem. Biophys. 689, 108461 (2020)

    Article  CAS  PubMed  Google Scholar 

  65. J.M. Hong, C.S. Park, I.S. Nam-Goong, Y.S. Kim, J.C. Lee, M.W. Han, J.I. Choi, Y.I. Kim, E.S. Kim, Curcumin enhances docetaxel-induced apoptosis of 8505c anaplastic thyroid carcinoma cells. Endocrinol. Metab. 29, 54–61 (2014)

    Article  Google Scholar 

  66. J. Zhang, J. Yu, R. Xie, W. Chen, Y. Lv, Combinatorial anticancer effects of curcumin and sorafenib towards thyroid cancer cells via pi3k/akt and erk pathways. Nat. Prod. Res. 30, 1858–1861 (2016)

    Article  CAS  PubMed  Google Scholar 

  67. C.H. Park, S.E. Han, I.S. Nam-Goong, Y.I. Kim, E.S. Kim, Combined effects of baicalein and docetaxel on apoptosis in 8505c anaplastic thyroid cancer cells via downregulation of the ERK and Akt/mTOR pathways. Endocrinol. Metab. 33, 121–132 (2018)

    Article  CAS  Google Scholar 

  68. M. Celano, V. Maggisano, S. Bulotta, L. Allegri, V. Pecce, L. Abballe, G. Damante, D. Russo, Quercetin improves the effects of sorafenib on growth and migration of thyroid cancer cells. Endocrine 67, 496–498 (2020)

    Article  CAS  PubMed  Google Scholar 

  69. C.J. Mooney, G. Nagaiah, P. Fu, J.K. Wasman, M.M. Cooney, P.S. Savvides, J.A. Bokar, A. Dowlati, D. Wang, S.S. Agarwala, S.M. Flick, P.H. Hartman, J.D. Ortiz, P.N. Lavertu, S.C. Remick, A phase II trial of fosbretabulin in advanced anaplastic thyroid carcinoma and correlation of baseline serum-soluble intracellular adhesion molecule-1 with outcome. Thyroid 19(3), 233–240 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. J.A. Sosa, R. Elisei, B. Jarzab, J. Balkissoon, S.P. Lu, C. Bal, S. Marur, A. Gramza, R.B. Yosef, B. Gitlitz, B.R. Haugen, F. Ondrey, C. Lu, S.M. Karandikar, F. Khuri, L. Licitra, S.C. Remick, Randomized safety and efficacy study of fosbretabulin with paclitaxel/carboplatin against anaplastic thyroid carcinoma. Thyroid 24(2), 232–240 (2014)

    Article  CAS  PubMed  Google Scholar 

  71. R. Granata, L.D. Locati, L. Licitra, Fosbretabulin for the treatment of anaplastic thyroid cancer. Future Oncol. 10(13), 2015–2021 (2014)

    Article  CAS  PubMed  Google Scholar 

  72. M. Sponziello, C. Brunelli, A. Verrienti, G. Grani, V. Pecce, L. Abballe, V. Ramundo, G. Damante, D. Russo, C.P. Lombardi, C. Durante, E.D. Rossi, P. Straccia, S. Filetti, Performance of a dual-component molecular assay in cytologically indeterminate thyroid nodules. Endocrine 68, 468–475 (2020)

    Article  Google Scholar 

  73. F. Rosignolo, M. Sponziello, D. Russo, V. Pecce, L. Giacomelli, M. Biffoni, R. Bellantone, C.P. Lombardi, L. Lamartina, G. Grani, C. Durante, S. Filetti, A. Verrienti, Identification of thyroid-associated serum microRNA profiles and their potential use in thyroid cancer follow-up. J. Endocr. Soc. 1, 3–13 (2017)

    CAS  PubMed  Google Scholar 

  74. M. Celano, F. Rosignolo, V. Maggisano, V. Pecce, M. Iannone, D. Russo, S. Bulotta, MicroRNAs as biomarkers in thyroid carcinoma. Int. J. Genomics 2017, 6496570 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  75. F. Rosignolo, L. Memeo, F. Monzani, C. Colarossi, V. Pecce, A. Verrienti, C. Durante, G. Grani, L. Lamartina, S. Forte, D. Martinetti, D. Giuffrida, D. Russo, F. Basolo, S. Filetti, M. Sponziello, MicroRNA-based molecular classification of papillary thyroid carcinoma. Int. J. Oncol. 50(5), 1767–1777 (2017)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Melissa Kerr for the language revision of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Russo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulotta, S., Capriglione, F., Celano, M. et al. Phytochemicals in thyroid cancer: analysis of the preclinical studies. Endocrine 73, 8–15 (2021). https://doi.org/10.1007/s12020-021-02651-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-021-02651-y

Keywords

Navigation