Skip to main content

Advertisement

Log in

Age effect on thyroid hormone brain response in male mice

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Thyroid hormones (TH) are important for brain development and central nervous system (CNS) function. Disturbances of thyroid function occur with higher prevalence in the ageing population and may negatively impact brain function.

Methods

We investigated the age impact on behavior in young adult and old male mice (5 vs. 20 months) with chronic hypo- or hyper-thyroidism as well as in sham-treated controls. Expression of TH transporters and TH responsive genes was studied in CNS and pituitary by in situ hybridization and qRT-PCR, whereas TH serum concentrations were determined by immunoassay.

Results

Serum TH levels were lower in old compared with young hyperthyroid mice, suggesting a milder hyperthyroid phenotype in the aged group. Likewise, elevated plus maze activity was reduced in old hyperthyroid animals. Under hypothyroid conditions, thyroxine serum concentrations did not differ in young and old mice. Both groups showed a comparable decline in activity and elevated anxiety levels. However, an attenuated increase in hypothalamic thyrotropin releasing hormone and pituitary thyroid stimulating hormone transcript expression was found in old hypothyroid mice. Brain expression of monocarboxylate transporter 8 and organic anion transporting polypeptide 1c1 was not affected by age or TH status.

Conclusions

In summary, ageing attenuates neurological phenotypes in hyperthyroid but not hypothyroid mice, which fits with age effects on TH serum levels in the animals. In contrast no changes in TH transporter expression were found in aged mouse brains with hyper- or hypo-thyroid state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Bernal, A. Guadano-Ferraz, B. Morte, Perspectives in the study of thyroid hormone action on brain development and function. Thyroid 13(11), 1005–1012 (2003). https://doi.org/10.1089/105072503770867174

    Article  CAS  PubMed  Google Scholar 

  2. M. Ritchie, B.B. Yeap, Thyroid hormone: influences on mood and cognition in adults. Maturitas 81(2), 266–275 (2015). https://doi.org/10.1016/j.maturitas.2015.03.016

    Article  CAS  PubMed  Google Scholar 

  3. F.L. Yudiarto, L. Muliadi, D. Moeljanto, B. Hartono, Neuropsychological findings in hyperthyroid patients. Acta Med. Indones. 38(1), 6–10 (2006)

    PubMed  Google Scholar 

  4. J.M. Guimaraes, deSouza Lopes, C. Baima, J. Sichieri, R. Depression, symptoms and hypothyroidism in a population-based study of middle-aged Brazilian women. J. Affect. Disord. 117(1-2), 120–123 (2009). https://doi.org/10.1016/j.jad.2008.12.012

    Article  PubMed  Google Scholar 

  5. S. Gulseren, L. Gulseren, Z. Hekimsoy, P. Cetinay, C. Ozen, B. Tokatlioglu, Depression, anxiety, health-related quality of life, and disability in patients with overt and subclinical thyroid dysfunction. Arch. Med. Res. 37(1), 133–139 (2006). https://doi.org/10.1016/j.arcmed.2005.05.008

    Article  PubMed  Google Scholar 

  6. J.D. Davis, R.A. Stern, L.A. Flashman, Cognitive and neuropsychiatric aspects of subclinical hypothyroidism: significance in the elderly. Curr. Psychiatry Rep. 5(5), 384–390 (2003)

    Article  Google Scholar 

  7. M.F. Schreckenberger, U.T. Egle, S. Drecker, H.G. Buchholz, M.M. Weber, P. Bartenstein, G.J. Kahaly, Positron emission tomography reveals correlations between brain metabolism and mood changes in hyperthyroidism. J. Clin. Endocrinol. Metab. 91(12), 4786–4791 (2006). https://doi.org/10.1210/jc.2006-0573

    Article  CAS  PubMed  Google Scholar 

  8. W. Zhang, X. Liu, Y. Zhang, L. Song, J. Hou, B. Chen, M. He, P. Cai, H. Lii, Disrupted functional connectivity of the hippocampus in patients with hyperthyroidism: evidence from resting-state fMRI. Eur. J. Radiol. 83(10), 1907–1913 (2014). https://doi.org/10.1016/j.ejrad.2014.07.003

    Article  PubMed  Google Scholar 

  9. A. Gobel, M. Heldmann, M. Gottlich, A.L. Dirk, G. Brabant, T.F. Munte, Effect of mild thyrotoxicosis on performance and brain activations in a working memory task. PLoS ONE 11(8), e0161552 (2016). https://doi.org/10.1371/journal.pone.0161552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. A. Gobel, M. Heldmann, A. Sartorius, M. Gottlich, A.L. Dirk, G. Brabant, T.F. Munte, Mild thyrotoxicosis leads to brain perfusion changes: an arterial spin labelling study. J. Neuroendocrinol. 29(1), (2017). https://doi.org/10.1111/jne.12446

  11. S. Mayerl, J. Muller, R. Bauer, S. Richert, C.M. Kassmann, V.M. Darras, K. Buder, A. Boelen, T.J. Visser, H. Heuer, Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis. J. Clin. Investig. 124(5), 1987–1999 (2014). https://doi.org/10.1172/JCI70324

    Article  CAS  PubMed  Google Scholar 

  12. S. Barez-Lopez, D. Bosch-Garcia, D. Gomez-Andres, I. Pulido-Valdeolivas, A. Montero-Pedrazuela, M.J. Obregon, A. Guadano-Ferraz, Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase. PLoS ONE 9(8), e103857 (2014). https://doi.org/10.1371/journal.pone.0103857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. Barez-Lopez, A. Montero-Pedrazuela, D. Bosch-Garcia, C. Venero, A. Guadano-Ferraz, Increased anxiety and fear memory in adult mice lacking type 2 deiodinase. Psychoneuroendocrinology 84, 51–60 (2017). https://doi.org/10.1016/j.psyneuen.2017.06.013

    Article  CAS  PubMed  Google Scholar 

  14. J.P. Stohn, M.E. Martinez, A. Hernandez, Decreased anxiety- and depression-like behaviors and hyperactivity in a type 3 deiodinase-deficient mouse showing brain thyrotoxicosis and peripheral hypothyroidism. Psychoneuroendocrinology 74, 46–56 (2016). https://doi.org/10.1016/j.psyneuen.2016.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. C. Venero, A. Guadano-Ferraz, A.I. Herrero, K. Nordstrom, J. Manzano, G.M. de Escobar, J. Bernal, B. Vennstrom, Anxiety, memory impairment, and locomotor dysfunction caused by a mutant thyroid hormone receptor alpha1 can be ameliorated by T3 treatment. Genes Dev. 19(18), 2152–2163 (2005). https://doi.org/10.1101/gad.346105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. Richard, N. Aguilera, M. Thevenet, O. Dkhissi-Benyahya, F. Flamant, Neuronal expression of a thyroid hormone receptor alpha mutation alters mouse behaviour. Behav. Brain Res. 321, 18–27 (2017). https://doi.org/10.1016/j.bbr.2016.12.025

    Article  CAS  PubMed  Google Scholar 

  17. K. Engels, H. Rakov, D. Zwanziger, G.S. Hones, M. Rehders, K. Brix, J. Kohrle, L.C. Moller, D. Fuhrer, Efficacy of protocols for induction of chronic hyperthyroidism in male and female mice. Endocrine 54(1), 47–54 (2016). https://doi.org/10.1007/s12020-016-1020-8

    Article  CAS  PubMed  Google Scholar 

  18. H. Heuer, M.K. Schafer, D. O’Donnell, P. Walker, K. Bauer, Expression of thyrotropin-releasing hormone receptor 2 (TRH-R2) in the central nervous system of rats. J. Comp. Neurol. 428(2), 319–336 (2000)

    Article  CAS  Google Scholar 

  19. H. Heuer, M.K. Maier, S. Iden, J. Mittag, E.C. Friesema, T.J. Visser, K. Bauer, The monocarboxylate transporter 8 linked to human psychomotor retardation is highly expressed in thyroid hormone-sensitive neuron populations. Endocrinology 146(4), 1701–1706 (2005). https://doi.org/10.1210/en.2004-1179

    Article  CAS  PubMed  Google Scholar 

  20. J. Muller, H. Heuer, Expression pattern of thyroid hormone transporters in the postnatal mouse brain. Front Endocrinol. 5, 92 (2014). https://doi.org/10.3389/fendo.2014.00092

    Article  Google Scholar 

  21. G.B. Potter, J.M. Zarach, J.M. Sisk, C.C. Thompson, The thyroid hormone-regulated corepressor hairless associates with histone deacetylases in neonatal rat brain. Mol. Endocrinol. 16(11), 2547–2560 (2002). https://doi.org/10.1210/me.2002-0115

    Article  CAS  PubMed  Google Scholar 

  22. D. Spano, I. Branchi, A. Rosica, M.T. Pirro, A. Riccio, P. Mithbaokar, A. Affuso, C. Arra, P. Campolongo, D. Terracciano, V. Macchia, J. Bernal, E. Alleva, R. Di Lauro, Rhes is involved in striatal function. Mol. Cell Biol. 24(13), 5788–5796 (2004). https://doi.org/10.1128/MCB.24.13.5788-5796.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. P. Gil-Ibanez, J. Bernal, B. Morte, Thyroid hormone regulation of gene expression in primary cerebrocortical cells: role of thyroid hormone receptor subtypes and interactions with retinoic acid and glucocorticoids. PLoS ONE 9(3), e91692 (2014). https://doi.org/10.1371/journal.pone.0091692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. A. Buras, L. Battle, E. Landers, T. Nguyen, N. Vasudevan, Thyroid hormones regulate anxiety in the male mouse. Horm. Behav. 65(2), 88–96 (2014). https://doi.org/10.1016/j.yhbeh.2013.11.008

    Article  CAS  PubMed  Google Scholar 

  25. C.G. Vasilopoulou, C. Constantinou, D. Giannakopoulou, P. Giompres, M. Margarity, Effect of adult onset hypothyroidism on behavioral parameters and acetylcholinesterase isoforms activity in specific brain regions of male mice. Physiol. Behav. 164(Pt A), 284–291 (2016). https://doi.org/10.1016/j.physbeh.2016.06.016

    Article  CAS  PubMed  Google Scholar 

  26. K. Wallis, M. Sjogren, M. van Hogerlinden, G. Silberberg, A. Fisahn, K. Nordstrom, L. Larsson, H. Westerblad, G. de Escobar Morreale, O. Shupliakov, B. Vennstrom, Locomotor deficiencies and aberrant development of subtype-specific GABAergic interneurons caused by an unliganded thyroid hormone receptor alpha1. J. Neurosci. 28(8), 1904–1915 (2008). https://doi.org/10.1523/JNEUROSCI.5163-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. C. Johansson, P.K. Lunde, S. Gothe, J. Lannergren, H. Westerblad, Isometric force and endurance in skeletal muscle of mice devoid of all known thyroid hormone receptors. J. Physiol. 547(Pt 3), 789–796 (2003). https://doi.org/10.1113/jphysiol.2002.032086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Z. Soffe, H.G. Radley-Crabb, C. McMahon, M.D. Grounds, T. Shavlakadze, Effects of loaded voluntary wheel exercise on performance and muscle hypertrophy in young and old male C57Bl/6J mice. Scand. J. Med Sci. Sports 26(2), 172–188 (2016). https://doi.org/10.1111/sms.12416

    Article  CAS  PubMed  Google Scholar 

  29. S.R. Raymaekers, V.M. Darras, Thyroid hormones and learning-associated neuroplasticity. Gen. Comp. Endocrinol. 247, 26–33 (2017). https://doi.org/10.1016/j.ygcen.2017.04.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to A. Jaeger, S. Rehn, M. Schmidt for their dedicated technical support.

Funding

This work was supported by DFG FU356/7–1/2 to DF, MO1018/2–1/2 to LCM, and HE3418/8–1 to HH in the framework of SPP1629 and RTG1715 to HH/FK. Funding source was not involved in decisions about study design; collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Führer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All animal experiments were performed in accordance with the German regulations for Laboratory Animal Science (GVSOLAS) and the European Health Law of the Federation of Laboratory Animal Science Associations (FELASA). The protocols for animal studies were approved by the Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (LANUV-NRW), Germany (AZ.84–02.04.2013.A188).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerp, H., Engels, K., Kramer, F. et al. Age effect on thyroid hormone brain response in male mice. Endocrine 66, 596–606 (2019). https://doi.org/10.1007/s12020-019-02078-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-019-02078-6

Keywords

Navigation