Skip to main content

Advertisement

Log in

Activation of retinal Müller cells in response to glucose variability

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

In the earliest stages of diabetic retinopathy (DR), a dysfunction of Müller cells, characterized by high levels of glial fibrillary acidic protein (GFAP), and aquaporins (AQP), has been observed. Although chronic hyperglycemia causes the activation of Müller cells, the effect of glycemic fluctuations is yet unknown. The aim of the study was to analyze the impact of glucose variability on rat retinal Müller cells (rMC-1) adapted to either normal (5 mM) or high (25 mM) glucose levels.

Methods

rMC-1 were cultured in a medium containing either 5 mM (N cells) or 25 mM of glucose (H cells) and then incubated for 96 h in a medium containing (a) low glucose (either 1–3 or 5 mM), (b) basal glucose (either 5 or 25 mM), (c) high glucose (either 25 or 45 mM), (d) basal and high glucose alternated every 24 h; (e) low- and high glucose alternated every 24 h; (f) basal glucose with episodes of low glucose for 30 min twice a day. Müller cells activation was evaluated by measuring the levels of GFAP, AQP4, and phospho-active extracellular signal-regulated kinase (pERK).

Results

Under both basal and high glucose concentrations rMC-1 were viable, but their response to glucose excursions was different. In N cells kept under normal (5 mM) glucose, a significant glial activation was measured not only in response to constant high glucose but also to alternating low/high glucose. In H cells, adapted to 25 mM glucose, a significant response was observed only after exposition to a lower (5 mM) glucose concentration.

Conclusion

Our results highlight Müller cells activation in response to glucose variability and a different susceptibility depending on the basal glucose conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DR:

diabetic retinopathy

GFAP:

glial fibrillary acidic protein

AQP:

aquaporin

rMC-1:

retinal Müller cells

pERK:

phospho-active extracellular signal-regulated kinase

RGC:

retinal ganglion cells

N cells:

5 mM (1 g/L) glucose

H cells:

25 mM (4.5 g/L) glucose

GLUT1:

glucose transporter-1

GLP-1RA:

glucagon-like peptide 1 receptor agonists

References

  1. R. Lee, T.Y. Wong, C. Sabanayagam, Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis. 2, 17 (2015)

    Article  Google Scholar 

  2. S.F. Abcouwer, T.W. Gardner, Diabetic retinopathy: loss of neuroretinal adaptation to the diabetic metabolic environment. Ann. N. Y. Acad. Sci. 1311, 174–190 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. D.S. Ng, P.P. Chiang, G. Tan, C.G. Cheung et al. Retinal ganglion cell neuronal damage in diabetes and diabetic retinopathy. Clin. Exp. Ophthalmol. 44(4), 243–50 (2016)

    Article  PubMed  Google Scholar 

  4. A. Bringmann, P. Wiedemann, Müller Glial Cells in Retinal Disease. Ophthalmologica 227, 1–19 (2012)

    Article  PubMed  Google Scholar 

  5. B.A. Coughlin, D.J. Feenstra, S. Mohr, Müller cells and diabetic retinopathy. Vis. Res. 139, 93–100 (2017)

    Article  PubMed  Google Scholar 

  6. S. Vujosevic, A. Micera, S. Bini, M. Berton, G. Esposito, E. Midena, Aqueous Humor Biomarkers of Müller Cell Activation in Diabetic Eyes. Invest. Ophthalmol. Vis. Sci. 56, 3913–3918 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Y. Jiang, S.K. Biswas, J.J. Steinle, Serine 307 on insulin receptor substrate 1 is required for SOCS3 and TNF-α signaling in the rMC-1 cell line. Mol. Vis. 20, 1463–1470 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. B. Cui, J.H. Sun, F.F. Xiang, L. Liu, W.J. Li, Aquaporin 4 knockdown exacerbates streptozotocin-induced diabetic retinopathy through aggravating inflammatory response. Exp. Eye Res. 98, 37–43 (2012)

    Article  CAS  PubMed  Google Scholar 

  9. M.C. MacGregorl, L.R. Rosecan, A.M. Laties, F.M. Matschinskye, Altered Retinal Metabolism in Diabetes. J. Biol. Chem. 261(9), 4046–4051 (1986)

    Google Scholar 

  10. Y. Ueda, A. Inui, Y. Mifune et al. The effects of high glucose condition on rat tenocytes in vitro and rat Achilles tendon in vivo. Bone Joint Res. 7(5), 362–372 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Y. Huang, Z.G. Xiong, Choosing an appropriate glucose concentration according to different cell types and experimental purposes is very important. Cell Stress Chaperons 20, 1–2 (2015)

    Article  Google Scholar 

  12. V.P. Sarthy, S.J. Brodjian, K. Dutt, B.N. Kennedy, R.P. French, J.W. Crabb, Establishment and characterization of a retinal Müller cell line. Invest. Ophthalmol. Vis. Sci. 39(1), 212–6 (1998)

    CAS  PubMed  Google Scholar 

  13. L. Quagliaro, L. Piconi, R. Assaloni, L. Martinelli, E. Motz, A. Ceriello, Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes 52, 2795–2804 (2003)

    Article  CAS  PubMed  Google Scholar 

  14. J. Sun, Y. Xu, S. Sun, Y. Sun, X. Wang, Intermittent high glucose enhances cell proliferation and VEGF expression in retinal endothelial cells: the role of mitochondrial reactive oxygen species. Mol. Cell Biochem. 343, 27–35 (2010)

    Article  CAS  PubMed  Google Scholar 

  15. J. Sun, Y. Xu, H. Deng, S. Sun, Z. Dai, Y. Sun, Intermittent high glucose exacerbates the aberrant production of adiponectin and resistin through mitochondrial superoxide overproduction in adipocytes. J. Molen. 44, 179–185 (2010)

    CAS  Google Scholar 

  16. L.Q. Sun, Y.Y. Chen, X. Wang et al. The protective effect of alpha lipoic acid on Schwann cells exposed to constant or intermittent high glucose. Biochem. Pharmacol. 84, 961–973 (2012)

    Article  CAS  PubMed  Google Scholar 

  17. K.D. Kohnert, E.J. Freyse, E. Salzsieder, Glycaemic variability and pancreatic β-cell dysfunction. Curr. Diabetes Rev. 8, 345–354 (2012)

    Article  CAS  PubMed  Google Scholar 

  18. K.E. Trueblood, S. Mohr, G.R. Dubyak, Purinergic regulation of high-glucose-induced caspase-1 activation in the rat retinal Müller cell line rMC-1. Am. J. Physiol. Cell Physiol. 301(5), C1213–23 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Y. Zhong, J. Li, Y. Chen, J.J. Wang, R. Ratan, S.X. Zhang, Activation of endoplasmic reticulum stress by hyperglycemia is essential for Müller cell-derived inflammatory cytokine production in diabetes. Diabetes 61(2), 492–504 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. E.A. Nagelhus, O.P. Ottersen, Physiological roles of aquaporin-4 in brain. Physiol. Rev. 93(4), 1543–62 (2013). https://doi.org/10.1152/physrev.00011.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. F. Picconi, M. Parravano, D. Ylli et al. Retinal neurodegeneration in patients with type 1 diabetes mellitus: the role of glycemic variability. Acta. Diabetol 54(5), 489–497 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. X. Ye, H. Ren, M. Zhang, Z. Sun, A.C. Jiang, G. Xu, ERK1/2 signaling pathway in the release of VEGF from Müller cells in diabetes. Invest. Ophthalmol. Vis. Sci. 53(7), 3481–3489 (2012)

    Article  CAS  PubMed  Google Scholar 

  23. A. Matteucci, L. Gaddini, M. Villa et al. Neuroprotection by rat Müller glia against high glucose-induced neurodegeneration through a mechanism involving ERK1/2 activation. Exp. Eye Res. 125, 20–9 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. G. Groeger, F. Doonan, T.G. Cotter, M. Donovan, Reactive oxygen species regulate prosurvival ERK1/2 signaling and bFGF expression in gliosis within the retina. Invest. Ophthalmol. Vis. Sci. 53(10), 6645–54 (2012)

    Article  CAS  PubMed  Google Scholar 

  25. A. Nose, Y. Mori, Y. Uchiyama-Tanaka et al. Regulation of glucose transporter (GLUT1) gene expression by angiotensin II in mesangial cells: involvement of HB-EGF and EGF receptor transactivation. Hypertens. Res. 26(1), 67–73 (2003)

    Article  CAS  PubMed  Google Scholar 

  26. A.K. Kumagai, Glucose transport in brain and retina: implications in the management and complications of diabetes. Diabetes Metab. Res. Rev. 15(4), 261–73 (1999)

    Article  CAS  PubMed  Google Scholar 

  27. F. Moruno, E. Pérez-Jiménez, E. Knecht, Regulation of autophagy by glucose in mammalian cells. Cells 1(3), 372–395 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. J. Wang, M.W. Whiteman, H. Lian et al. ERK1/2 plays a role in the activation of autophagy. J. Biol. Chem. 284(32), 21412–24 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. C.H. Wong, K.B. Iskandar, S.K. Yadav, J.L. Hirpara, T. Loh, S. Pervaiz, Simultaneous induction of non-canonical autophagy and apoptosis in cancer cells by ROS-dependent ERK and JNK activation. PLoS ONE 5(4), e9996 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. W. Zhang, J. Song, Y. Zhang et al. Intermittent high glucose-induced oxidative stress modulates retinal pigmented epithelial cell autophagy and promotes cell survival via increased HMGB1.BMC. Ophthalmol. 18, 192 (2018)

    CAS  Google Scholar 

  31. L.E. Johnson, M. Larsen, M.T. Perez, Retinal adaptation to changing glycemic levels in a rat model of type 2 diabetes. PLoS ONE 8, 55456 (2013)

    Article  CAS  Google Scholar 

  32. S.P. Marso, S.C. Bain, A. Consoli et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 375, 1834–1844 (2016)

    Article  CAS  PubMed  Google Scholar 

  33. L. Varadhan, T. Humphreys, C. Hariman, A.B. Walker, G.I. Varughese, GLP-1 agonist treatment: implications for diabetic retinopathy screening. Diabetes Res. Clin. Pract. 94, 68–71 (2011)

    Article  CAS  Google Scholar 

  34. L. Varadhan, T. Humphreys, A.B. Walker, G.I. Varughese, The impact of improved glycaemic control with GLP-1 receptor agonist therapy on diabetic retinopathy. Diabetes Res. Clin. Pract. 103, 37–39 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research for this paper was partially supported by the Italian Ministry of Health and Fondazione Roma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Frontoni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally: Fabiana Picconi, Mariacristina Parravano

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Picconi, F., Parravano, M., Sciarretta, F. et al. Activation of retinal Müller cells in response to glucose variability. Endocrine 65, 542–549 (2019). https://doi.org/10.1007/s12020-019-02017-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-019-02017-5

Keywords

Navigation