Skip to main content
Log in

Clonal analysis of early-stage bilateral papillary thyroid cancer identifies field cancerization

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Introduction

Bilaterality is a newly identified indicator for aggressive tumor behavior and poor outcome in papillary thyroid cancer. However, the clonal origin of these bilateral tumors remains unclear.

Methods

Here we analyzed 28 pairs of early-stage papillary thyroid cancers (stage I–II without extra-thyroidal extension, lymph node metastasis or distant metastasis) that underwent surgery at First Affiliated Hospital of Zhejiang University School of Medicine (Hangzhou, China). Genomic DNA was extracted from paraffin-embedded tissues after microdissection and analyzed for BRAF mutation and X-chromosome inactivation.

Results

A total of 16 patients (16/28, 57.1%) harbored different BRAF status in bilateral tumors. Fourteen patients were available for X-chromosome inactivation assay and 10 of them achieved informative results. Bilateral tumors from four cases had distinct patterns of X-chromosome inactivation. Combining the results of X-chromosome inactivation and BRAF analysis, we demonstrated that at least 64.3% (18/28) cases harbored discordant X-chromosome inactivation or BRAF status, indicating their independent clonal origin in bilateral tumors.

Conclusions

The present study confirms “field cancerization” in early-stage bilateral thyroid cancers, suggesting that these subtype papillary thyroid cancers should be treated as independent and localized tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2018. CA Cancer J. Clin. 68(1), 7–30 (2018). https://doi.org/10.3322/caac.21442

    Article  PubMed  Google Scholar 

  2. K.D. Miller, R.L. Siegel, C.C. Lin, A.B. Mariotto, J.L. Kramer, J.H. Rowland, K.D. Stein, R. Alteri, A. Jemal, Cancer treatment and survivorship statistics, 2016. CA Cancer J. Clin. 66(4), 271–289 (2016). https://doi.org/10.3322/caac.21349

    Article  PubMed  Google Scholar 

  3. M.R. Haymart, M. Banerjee, A.K. Stewart, R.J. Koenig, J.D. Birkmeyer, J.J. Griggs, Use of radioactive iodine for thyroid cancer. JAMA 306(7), 721–728 (2011). https://doi.org/10.1001/jama.2011.1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S. Markovina, P.W. Grigsby, J.K. Schwarz, T. DeWees, J.F. Moley, B.A. Siegel, S.M. Perkins, Treatment approach, surveillance, and outcome of well-differentiated thyroid cancer in childhood and adolescence. Thyroid 24(7), 1121–1126 (2014). https://doi.org/10.1089/thy.2013.0297

    Article  PubMed  Google Scholar 

  5. S.C. Pitt, R.S. Sippel, H. Chen, Contralateral papillary thyroid cancer: does size matter? Am. J. Surg. 197(3), 342–347 (2009). https://doi.org/10.1016/j.amjsurg.2008.09.011

    Article  PubMed  PubMed Central  Google Scholar 

  6. J.L. Pasieka, N.W. Thompson, M.K. McLeod, R.E. Burney, M. Macha, The incidence of bilateral well-differentiated thyroid cancer found at completion thyroidectomy. World J. Surg. 16(4), 711–716 (1992). discussion 716-717

    Article  CAS  PubMed  Google Scholar 

  7. B.S. Koo, H.S. Lim, Y.C. Lim, Y.H. Yoon, Y.M. Kim, Y.H. Park, K.S. Rha, Occult contralateral carcinoma in patients with unilateral papillary thyroid microcarcinoma. Ann. Surg. Oncol. 17(4), 1101–1105 (2010). https://doi.org/10.1245/s10434-009-0906-6

    Article  PubMed  Google Scholar 

  8. W. Wang, W. Zhao, H. Wang, X. Teng, H. Wang, X. Chen, Z. Li, X. Yu, T.J. Fahey 3rd, L. Teng, Poorer prognosis and higher prevalence of BRAF (V600E) mutation in synchronous bilateral papillary thyroid carcinoma. Ann. Surg. Oncol. 19(1), 31–36 (2012). https://doi.org/10.1245/s10434-011-2096-2

    Article  PubMed  Google Scholar 

  9. W. Wang, X. Su, K. He, Y. Wang, H. Wang, H. Wang, Y. Zhao, W. Zhao, R. Zarnegar, T.J. Fahey 3rd, X. Teng, L. Teng, Comparison of the clinicopathologic features and prognosis of bilateral versus unilateral multifocal papillary thyroid cancer: an updated study with more than 2000 consecutive patients. Cancer 122(2), 198–206 (2016). https://doi.org/10.1002/cncr.29689

    Article  CAS  PubMed  Google Scholar 

  10. M.F. Lyon, Sex chromatin and gene action in the mammalian X-chromosome. Am. J. Hum. Genet. 14, 135–148 (1962)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. C. Swanton, Intratumor heterogeneity: evolution through space and time. Cancer Res. 72(19), 4875–4882 (2012). https://doi.org/10.1158/0008-5472.CAN-12-2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. M. Gerlinger, A.J. Rowan, S. Horswell, M. Math, J. Larkin, D. Endesfelder, E. Gronroos, P. Martinez, N. Matthews, A. Stewart, P. Tarpey, I. Varela, B. Phillimore, S. Begum, N.Q. McDonald, A. Butler, D. Jones, K. Raine, C. Latimer, C.R. Santos, M. Nohadani, A.C. Eklund, B. Spencer-Dene, G. Clark, L. Pickering, G. Stamp, M. Gore, Z. Szallasi, J. Downward, P.A. Futreal, C. Swanton, Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366(10), 883–892 (2012). https://doi.org/10.1056/NEJMoa1113205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. E.C. de Bruin, N. McGranahan, R. Mitter, M. Salm, D.C. Wedge, L. Yates, M. Jamal-Hanjani, S. Shafi, N. Murugaesu, A.J. Rowan, E. Gronroos, M.A. Muhammad, S. Horswell, M. Gerlinger, I. Varela, D. Jones, J. Marshall, T. Voet, P. Van Loo, D.M. Rassl, R.C. Rintoul, S.M. Janes, S.M. Lee, M. Forster, T. Ahmad, D. Lawrence, M. Falzon, A. Capitanio, T.T. Harkins, C.C. Lee, W. Tom, E. Teefe, S.C. Chen, S. Begum, A. Rabinowitz, B. Phillimore, B. Spencer-Dene, G. Stamp, Z. Szallasi, N. Matthews, A. Stewart, P. Campbell, C. Swanton, Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346(6206), 251–256 (2014). https://doi.org/10.1126/science.1253462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M. Xing, Molecular pathogenesis and mechanisms of thyroid cancer. Nat. Rev. Cancer 13(3), 184–199 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. J.A. Knauf, X. Ma, E.P. Smith, L. Zhang, N. Mitsutake, X.H. Liao, S. Refetoff, Y.E. Nikiforov, J.A. Fagin, Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res. 65(10), 4238–4245 (2005). https://doi.org/10.1158/0008-5472.CAN-05-0047

    Article  CAS  PubMed  Google Scholar 

  16. Z. Lu, J. Sheng, Y. Zhang, J. Deng, Y. Li, A. Lu, J. Zhang, H. Yu, M. Zhang, Z. Xiong, H. Yan, B.H. Diplas, Y. Lu, B. Liu, Clonality analysis of multifocal papillary thyroid carcinoma by using genetic profiles. J. Pathol. 239(1), 72–83 (2016). https://doi.org/10.1002/path.4696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. T.M. Shattuck, W.H. Westra, P.W. Ladenson, A. Arnold, Independent clonal origins of distinct tumor foci in multifocal papillary thyroid carcinoma. N. Engl. J. Med. 352(23), 2406–2412 (2005). https://doi.org/10.1056/NEJMoa044190

    Article  CAS  PubMed  Google Scholar 

  18. S.Y. Park, Y.J. Park, Y.J. Lee, H.S. Lee, S.H. Choi, G. Choe, H.C. Jang, S.H. Park, D.J. Park, B.Y. Cho, Analysis of differential BRAF(V600E) mutational status in multifocal papillary thyroid carcinoma: evidence of independent clonal origin in distinct tumor foci. Cancer 107(8), 1831–1838 (2006). https://doi.org/10.1002/cncr.22218

    Article  CAS  PubMed  Google Scholar 

  19. W. Wang, H. Wang, X. Teng, H. Wang, C. Mao, R. Teng, W. Zhao, J. Cao, T.J. Fahey 3rd, L. Teng, Clonal analysis of bilateral, recurrent, and metastatic papillary thyroid carcinomas. Hum. Pathol. 41(9), 1299–1309 (2010). https://doi.org/10.1016/j.humpath.2010.02.008

    Article  CAS  PubMed  Google Scholar 

  20. R.P. McCarthy, M. Wang, T.D. Jones, R.W. Strate, L. Cheng, Molecular evidence for the same clonal origin of multifocal papillary thyroid carcinomas. Clin. Cancer Res. 12(8), 2414–2418 (2006). https://doi.org/10.1158/1078-0432.CCR-05-2818

    Article  CAS  PubMed  Google Scholar 

  21. T.J. O’Grady, M.A. Gates, F.P. Boscoe, Thyroid cancer incidence attributable to overdiagnosis in the United States 1981–2011. Int. J. Cancer 137(11), 2664–2673 (2015). https://doi.org/10.1002/ijc.29634

    Article  CAS  PubMed  Google Scholar 

  22. C.M. Kitahara, J.A. Sosa, The changing incidence of thyroid cancer. Nat. Rev. Endocrinol. 12(11), 646–653 (2016). https://doi.org/10.1038/nrendo.2016.110

    Article  PubMed  Google Scholar 

  23. L. Klotz, Cancer overdiagnosis and overtreatment. Curr. Opin. Urol. 22(3), 203–209 (2012). https://doi.org/10.1097/MOU.0b013e32835259aa

    Article  PubMed  Google Scholar 

  24. S. Jegerlehner, J.L. Bulliard, D. Aujesky, N. Rodondi, S. Germann, I. Konzelmann, A. Chiolero, N.W. Group, Overdiagnosis and overtreatment of thyroid cancer: a population-based temporal trend study. PLoS ONE 12(6), e0179387 (2017). https://doi.org/10.1371/journal.pone.0179387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. R.P. Tufano, S.I. Noureldine, P. Angelos, Incidental thyroid nodules and thyroid cancer: considerations before determining management. JAMA Otolaryngol. Head Neck Surg. 141(6), 566–572 (2015). https://doi.org/10.1001/jamaoto.2015.0647

    Article  PubMed  Google Scholar 

  26. R.A. DeLellis, Pathology and genetics of thyroid carcinoma. J. Surg. Oncol. 94(8), 662–669 (2006). https://doi.org/10.1002/jso.20700

    Article  CAS  PubMed  Google Scholar 

  27. N.D. Perrier, J.D. Brierley, R.M. Tuttle, Differentiated and anaplastic thyroid carcinoma: major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J. Clin. 68(1), 55–63 (2018). https://doi.org/10.3322/caac.21439

    Article  PubMed  Google Scholar 

  28. R.C. Allen, H.Y. Zoghbi, A.B. Moseley, H.M. Rosenblatt, J.W. Belmont, Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Am. J. Hum. Genet. 51(6), 1229–1239 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. W.D. Tilley, M. Marcelli, J.D. Wilson, M.J. McPhaul, Characterization and expression of a cDNA encoding the human androgen receptor. Proc. Natl Acad. Sci. USA 86(1), 327–331 (1989)

    Article  CAS  PubMed  Google Scholar 

  30. S. Moniz, A.L. Catarino, A.R. Marques, B. Cavaco, L. Sobrinho, V. Leite, Clonal origin of non-medullary thyroid tumours assessed by non-random X-chromosome inactivation. Eur. J. Endocrinol. 146(1), 27–33 (2002)

    Article  CAS  PubMed  Google Scholar 

  31. H. Davies, G.R. Bignell, C. Cox, P. Stephens, S. Edkins, S. Clegg, J. Teague, H. Woffendin, M.J. Garnett, W. Bottomley, N. Davis, E. Dicks, R. Ewing, Y. Floyd, K. Gray, S. Hall, R. Hawes, J. Hughes, V. Kosmidou, A. Menzies, C. Mould, A. Parker, C. Stevens, S. Watt, S. Hooper, R. Wilson, H. Jayatilake, B.A. Gusterson, C. Cooper, J. Shipley, D. Hargrave, K. Pritchard-Jones, N. Maitland, G. Chenevix-Trench, G.J. Riggins, D.D. Bigner, G. Palmieri, A. Cossu, A. Flanagan, A. Nicholson, J.W. Ho, S.Y. Leung, S.T. Yuen, B.L. Weber, H.F. Seigler, T.L. Darrow, H. Paterson, R. Marais, C.J. Marshall, R. Wooster, M.R. Stratton, P.A. Futreal, Mutations of the BRAF gene in human cancer. Nature 417(6892), 949–954 (2002). https://doi.org/10.1038/nature00766

    Article  CAS  Google Scholar 

  32. P.C. Nowell, The clonal evolution of tumor cell populations. Science 194(4260), 23–28 (1976)

    Article  CAS  PubMed  Google Scholar 

  33. D.P. Slaughter, H.W. Southwick, W. Smejkal, Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 6(5), 963–968 (1953)

    Article  CAS  PubMed  Google Scholar 

  34. V.M. van Houten, C.R. Leemans, J.A. Kummer, J. Dijkstra, D.J. Kuik, M.W. van den Brekel, G.B. Snow, R.H. Brakenhoff, Molecular diagnosis of surgical margins and local recurrence in head and neck cancer patients: a prospective study. Clin. Cancer Res. 10(11), 3614–3620 (2004). https://doi.org/10.1158/1078-0432.CCR-03-0631

    Article  PubMed  Google Scholar 

  35. K. Shiga, T. Ogawa, F. Yoshida, K. Matsuura, M. Tateda, S. Saijo, T. Miyagi, T. Kobayashi, Multiple squamous cell carcinomas of the head and neck show different phenotypes of allelic loss patterns suggesting different clonal origin of carcinogenesis. Anticancer Res. 23(5A), 3911–3915 (2003)

    PubMed  Google Scholar 

  36. G.H. Heppner, F.R. Miller, The cellular basis of tumor progression. Int. Rev. Cytol. 177, 1–56 (1998)

    CAS  PubMed  Google Scholar 

  37. H. Chai, R.E. Brown, Field effect in cancer-an update. Ann. Clin. Lab. Sci. 39(4), 331–337 (2009)

    CAS  PubMed  Google Scholar 

  38. W.C. Kisseberth, E.P. Sandgren, Polyclonal development of mouse mammary preneoplastic nodules. Cancer Res. 64(3), 857–863 (2004)

    Article  CAS  PubMed  Google Scholar 

  39. A.J. Merritt, K.A. Gould, W.F. Dove, Polyclonal structure of intestinal adenomas in ApcMin/+mice with concomitant loss of Apc+ from all tumor lineages. Proc. Natl Acad. Sci. USA 94(25), 13927–13931 (1997)

    Article  CAS  PubMed  Google Scholar 

  40. M.R. Novelli, J.A. Williamson, I.P. Tomlinson, G. Elia, S.V. Hodgson, I.C. Talbot, W.F. Bodmer, N.A. Wright, Polyclonal origin of colonic adenomas in an XO/XY patient with FAP. Science 272(5265), 1187–1190 (1996)

    Article  CAS  PubMed  Google Scholar 

  41. D.J. Winton, M.A. Blount, B.A. Ponder, Polyclonal origin of mouse skin papillomas. Br. J. Cancer 60(1), 59–63 (1989)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is supported by Grants from National Natural Science Foundation of China (No. 81202141, and 81272676), the Key Project of Scientific and Technological Innovation of Zhejiang Province (No. 2015C03G2010206), National Science and Technology Major Project of the Ministry of Science and Technology of China (No. 2013ZX09506015), Medical Science and Technology Project of Zhejiang Province (No. 2011ZDA009), and Natural Science Foundation of Zhejiang Province (No. Y2110414).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weibin Wang or Lisong Teng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and informed consent

This study was approved by the Institutional Review Board of First Affiliated Hospital, Zhejiang University School of Medicine. Informed consent has been obtained from each patient after full explanation of the purpose and nature of all procedures were used according to the Helsinki Declaration of 1975, as revised in 1983.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, X., Chen, S., He, K. et al. Clonal analysis of early-stage bilateral papillary thyroid cancer identifies field cancerization. Endocrine 64, 614–621 (2019). https://doi.org/10.1007/s12020-019-01877-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-019-01877-1

Keywords

Navigation