Skip to main content
Log in

Blockade of the programmed death ligand 1 (PD-L1) as potential therapy for anaplastic thyroid cancer

  • Original article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Anaplastic thyroid carcinoma (ATC) is a rare, highly aggressive form of thyroid cancer (TC) characterized by an aggressive behavior and poor prognosis, resulting in patients’ death within a year. Standard treatments, such as chemo and radiotherapy, as well as tyrosine kinase inhibitors, are ineffective for ATC treatment. Cancer immunotherapy is one of the most promising research area in oncology. The PD-1/PD-L1 axis is of particular interest, in light of promising data showing a restoration of host immunity against tumors, with the prospect of long-lasting remissions.

Methods

In this study, we evaluated PD-L1 expression in a large series of TCs (20 cases) showing a progressive dedifferentiation of the thyroid tumor from well differentiated TC to ATC, employing two different antibodies [R&D Systems and VENTANA PD-L1 (SP263) Rabbit Monoclonal Primary Antibody]. We also tested the anti PD-L1 mAb in an in vivo animal model.

Results

We found that approximately 70–90% of ATC cases were positive for PD-L1 whereas normal thyroid and differentiated TC were negative. Moreover, all analyzed cases presented immunopositive staining in the endothelium of vessels within or in close proximity to the tumor, while normal thyroid vessels were negative. PD-L1 mAb was also effective in inhibiting ATC growth in an in vivo model.

Conclusions

These data suggest that immunotherapy may be a promising treatment specific for ATC suggesting the need to start with clinical TRIALs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D.M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–64 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. H. Borghaei, L. Paz-Ares, L. Horn, D.R. Spigel, M. Steins, N.E. Ready, L.Q. Chow, E.E. Vokes, E. Felip, E. Holgado, F. Barlesi, M. Kohlhäufl, O. Arrieta, M.A. Burgio, J. Fayette, H. Lena, E. Poddubskaya, D.E. Gerber, S.N. Gettinger, C.M. Rudin, N. Rizvi, L. Crinò, G.R. Blumenschein Jr, S.J. Antonia, C. Dorange, C.T. Harbison, F. Graf Finckenstein, J.R. Brahmer, Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373, 1627–39 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. T.K. Choueiri, M.N. Fishman, B. Escudier, D.F. McDermott, C.G. Drake, H. Kluger, W.M. Stadler, J.L. Perez-Gracia, D.G. McNeel, B. Curti, M.R. Harrison, E.R. Plimack, L. Appleman, L. Fong, L. Albiges, L. Cohen, T.C. Young, S.D. Chasalow, P. Ross-Macdonald, S. Srivastava, M. Jure-Kunkel, J.F. Kurland, J.S. Simon, M. Sznol, Immunomodulatory activity of nivolumab in metastatic renal cell carcinoma. Clin. Cancer Res. 22, 5461–5471 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. I. Márquez-Rodas, P. Cerezuela, A. Soria, A. Berrocal, A. Riso, M. González-Cao, S. Martín-Algarra, Immune checkpoint inhibitors: therapeutic advances in melanoma. Ann. Transl. Med. 3, 267 (2015)

    PubMed  PubMed Central  Google Scholar 

  5. H. Dong, S.E. Strome, D.R. Salomao, H. Tamura, F. Hirano, D.B. Flies, P.C. Roche, J. Lu, G. Zhu, K. Tamada, V.A. Lennon, E. Celis, L. Chen, Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8, 793–800 (2002). Erratum Nat. Med. 8, 1039 (2002)

    Article  CAS  PubMed  Google Scholar 

  6. J.M. Taube, R.A. Anders, G.D. Young, H. Xu, R. Sharma, T.L. McMiller, S. Chen, A.P. Klein, D.M. Pardoll, S.L. Topalian, L. Chen, Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl. Med. 4, 127ra37 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. B.R. Haugen, American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: what is new and what has changed? Cancer 2017 123, 372–381 (2015)

    Google Scholar 

  8. Z.W. Baloch, V.A. LiVolsi, Special types of thyroid carcinoma. Histopathology 72, 40–52 (2018)

    Article  PubMed  Google Scholar 

  9. M.E. Cabanillas, M. Zafereo, G.B. Gunn, R. Ferrarotto, Anaplastic thyroid carcinoma: treatment in the age of molecular targeted therapy. J. Oncol. Pract. 12, 511–8 (2016)

    Article  PubMed  Google Scholar 

  10. V. Tiedje, M. Stuschke, F. Weber, H. Dralle, L. Moss, D. Führer, Anaplastic thyroid carcinoma: review of treatment protocols. Endocr. Relat. Cancer 25, R153–R161 (2018)

    Article  CAS  PubMed  Google Scholar 

  11. D. Viola, L. Valerio, E. Molinaro, L. Agate, V. Bottici, A. Biagini, L. Lorusso, V. Cappagli, L. Pieruzzi, C. Giani, E. Sabini, P. Passannati, L. Puleo, A. Matrone, B. Pontillo-Contillo, V. Battaglia, S. Mazzeo, P. Vitti, R. Elisei, Treatment of advanced thyroid cancer with targeted therapies: ten years of experience. Endocr. Relat. Cancer 23, R185–205 (2016)

    Article  CAS  PubMed  Google Scholar 

  12. L.L. Cunha, M.A. Marcello, E.C. Morari, S. Nonogaki, F.F. Conte, R. Gerhard, F.A. Soares, J. Vassallo, L.S. Ward, Differentiated thyroid carcinomas may elude the immune system by B7H1 upregulation. Endocr. Relat. Cancer 20, 103–10 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. T.E. Angell, M.G. Lechner, J.K. Jang, A.J. Correa, J.S. LoPresti, A.L. Epstein, BRAF V600E in papillary thyroid carcinoma is associated with increased programmed death ligand 1 expression and suppressive immune cell infiltration. Thyroid 24, 1385–93 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. H. Wu, Y. Sun, H. Ye, S. Yang, S.L. Lee, A. de las Morenas, Anaplastic thyroid cancer: outcome and the mutation/expression profiles of potential targets. Pathol. Oncol. Res. 21, 695–701 (2015)

    Article  CAS  PubMed  Google Scholar 

  15. J.J. Bastman, H.S. Serracino, Y. Zhu, M.R. Koenig, V. Mateescu, S.B. Sams, K.D. Davies, C.D. Raeburn, R.C. McIntyre Jr, B.R. Haugen, J.D. French, Tumor-infiltrating T cells and the PD-1 checkpoint pathway in advanced differentiated and anaplastic thyroid cancer. J. Clin. Endocrinol. Metab. 101, 2863–73 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. Chowdhury, J. Veyhl, F. Jessa, O. Polyakova, A. Alenzi, C. MacMillan, R. Ralhan, P.G. Walfish, Programmed death-ligand 1 overexpression is a prognostic marker for aggressive papillary thyroid cancer and its variants. Oncotarget 7, 32318–28 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  17. S. Ahn, T.H. Kim, S.W. Kim, C.S. Ki, H.W. Jang, J.S. Kim, J.H. Kim, J.H. Choe, J.H. Shin, S.Y. Hahn, Y.L. Oh, J.H. Chung, Comprehensive screening for PD-L1 expression in thyroid cancer. Endocr. Relat. Cancer 24, 97–106 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. M.W. Rosenbaum, B.J. Gigliotti, S.I. Pai, S. Parangi, H. Wachtel, M. Mino-Kenudson, V. Gunda, W.C. Faquin, PD-L1 and IDO1 are expressed in poorly differentiated thyroid carcinoma. Endocr. Pathol. 29, 59–67 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. R. A. DeLellis, R. V. Lloyd, P. U. Heitz, C. Eng, eds. Pathology and Genetics of Tumors of Endocrine Organs. WHO Classification of Tumors, 3rd edn. vol 8, 2004

  20. P. Workman, E.O. Aboagye, F. Balkwill, A. Balmain, G. Bruder, D.J. Chaplin, J.A. Double, J. Everitt, D.A.H. Farningham, M.J. Glennie, L.R. Kelland, V. Robinson, I.J. Stratford, G.M. Tozer, S. Watson, S.R. Wedge, S.A. Eccles, An ad hoc committee of the National Cancer Research Institute. Guidelines for the welfare and use of animals in cancer research. Br. J. Cancer 102, 1555–1577 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. J.R. Brahmer, S.S. Tykodi, L.Q. Chow, W.J. Hwu, S.L. Topalian, P. Hwu, C.G. Drake, L.H. Camacho, J. Kauh, K. Odunsi, H.C. Pitot, O. Hamid, S. Bhatia, R. Martins, K. Eaton, S. Chen, T.M. Salay, S. Alaparthy, J.F. Grosso, A.J. Korman, S.M. Parker, S. Agrawal, S.M. Goldberg, D.M. Pardoll, A. Gupta, J.M. Wigginton, Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. I. Yamauchi, Y. Sakane, Y. Fukuda, T. Fujii, D. Taura, M. Hirata, K. Hirota, Y. Ueda, Y. Kanai, Y. Yamashita, E. Kondo, M. Sone, A. Yasoda, N. Inagaki, Clinical features of nivolumab-induced thyroiditis: a case series study. Thyroid 27, 894–901 (2017)

    Article  CAS  PubMed  Google Scholar 

  23. F.R. Hirsch, A. McElhinny, D. Stanforth, J. Ranger-Moore, M. Jansson, K. Kulangara, W. Richardson, P. Towne, D. Hanks, B. Vennapusa, A. Mistry, R. Kalamegham, S. Averbuch, J. Novotny, E. Rubin, K. Emancipator, I. McCaffery, J.A. Williams, J. Walker, J. Longshore, M.S. Tsao, K.M. Kerr, PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the Blueprint PD-L1 IHC assay comparison project. J. Thorac. Oncol. 12, 208–222 (2017)

    Article  PubMed  Google Scholar 

  24. M.S. Tsao, K.M. Kerr, M. Kockx, M.B. Beasley, A.C. Borczuk, J. Botling, L. Bubendorf, L. Chirieac, G. Chen, T.Y. Chou, J.H. Chung, S. Dacic, S. Lantuejoul, M. Mino-Kenudson, A.L. Moreira, A.G. Nicholson, M. Noguchi, G. Pelosi, C. Poleri, P.A. Russell, J. Sauter, E. Thunnissen, I. Wistuba, H. Yu, M.W. Wynes, M. Pintilie, Y. Yatabe, F.R. Hirsch, PD-L1Immunohistochemistry comparability study in real-life clinical samples: results of Blueprint phase 2 project. J. Thorac. Oncol. 3, 1302–1311 (2018)

    Article  Google Scholar 

  25. M.J. Eppihimer, J. Gunn, G.J. Freeman, E.A. Greenfield, T. Chernova, J. Erickson, J.P. Leonard, Expression and regulation of the PD-L1 immunoinhibitory molecule on microvascular endothelial cells. Microcirculation 9, 133–145 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. N. Rodig, T. Ryan, J.A. Allen, H. Pang, N. Grabie, C. Tatyana, E.A. Greenfield, S.C. Liang, A.H. Sharpe, A.H. Lichtman, G.J. Freeman, Endothelial expression of PD-L1 and PD-L2 downregulates CD8+ T cell activation and cytolysis. Eur. J. Immunol. 33, 3117–3126 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. S. Korehisa, T. Ikeda, S. Okano, H. Saeki, E. Oki, Y. Oda, M. Hashizume, Y. Maehara, A novel histological examination with dynamic three-dimensional reconstruction from multiple immunohistochemically stained sections of a PD-L1-positive colon cancer. Histopathology 72, 697–703 (2018)

    Article  PubMed  Google Scholar 

  28. L.C. Dieterich, K. Ikenberg, T. Cetintas, K. Kapaklikaya, C. Hutmahcer, M. Detmar, Tumor-associated lymphatic vessels upregulate PDL1 to inhibit T-cell activation. Front. Immunol. 8, 66 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. E. Allen, A. Jabouille, L.B. Rivers, I. Lodewijckx, R. Missiaen, V. Steri, K. Feyen, J. Tawney, D. Hanahan, I.P. Michael, G. Bergers, Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl. Med 9(385), pii: eaak9679 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Cantara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtain from all individual participants included in the study.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cantara, S., Bertelli, E., Occhini, R. et al. Blockade of the programmed death ligand 1 (PD-L1) as potential therapy for anaplastic thyroid cancer. Endocrine 64, 122–129 (2019). https://doi.org/10.1007/s12020-019-01865-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-019-01865-5

Keywords

Navigation