Skip to main content
Log in

Outcome and molecular characteristics of non-invasive encapsulated follicular variant of papillary thyroid carcinoma with oncocytic features

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

In 2016, non-invasive encapsulated follicular variant of papillary thyroid carcinoma (NI-EFVPTC) was renamed as noninvasive thyroid follicular neoplasm with papillary-like nuclear features (NIFTP). However, as the study cohort did not mention tumors with oncocytic features, such lesions are still labeled by some as FVPTC. It is therefore crucial to evaluate the outcome and molecular profile of oncocytic NI-EFVPTC.

Methods

A multi-institutional clinico-pathologic review was conducted to select 61 patients having oncocytic NI-EFVPTC. A detailed molecular profile was carried out in 15 patients.

Results

Oncocytic NI-EFVPTCs predominantly affected women in their 50s. There was no distant metastasis, lymph node metastases, or structural recurrence in the entire cohort. Among patients with ≥5 years of FU, all 33 individuals did not recur with a median FU of 10.2 years. Oncocytic NI-EFVPTC commonly had RAS (33%) mutations, a high frequency of mitochondrial DNA mutations (67%) and multiple chromosomal gains/losses (53%). No fusion genes were detected.

Conclusions

Oncocytic NI-EFVPTC, when stringently selected for, lacks metastasis at presentation and follows an extremely indolent clinical course, even when treated conservatively with lobectomy alone without RAI therapy. These tumors share a similar mutational profile as NIFTP, FVPTC, and follicular neoplasm and are predominantly RAS-related. Like Hurthle cell neoplasms, they harbor a high frequency of mitochondrial DNA mutations, which contribute to the oncocytic cytomorphology. However, they lack the widespread chromosomal alterations observed in Hurthle cell carcinoma. Consideration should be given to include oncocytic NI-EFVPTCs as NIFTP in order to avoid overtreatment of these highly indolent tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H. Lim, S.S. Devesa, J.A. Sosa, D. Check, C.M. Kitahara, Trends in thyroid cancer incidence and mortality in the United States, 1974-2013. JAMA 317(13), 1338–1348 (2017). https://doi.org/10.1001/jama.2017.2719

    Article  PubMed  Google Scholar 

  2. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2018. CA Cancer J. Clin. 68(1), 7–30 (2018). https://doi.org/10.3322/caac.21442

    Article  PubMed  Google Scholar 

  3. C.K. Jung, M.P. Little, J.H. Lubin, A.V. Brenner, S.A. Wells Jr., A.J. Sigurdson, Y.E. Nikiforov, The increase in thyroid cancer incidence during the last four decades is accompanied by a high frequency of BRAF mutations and a sharp increase in RAS mutations. J. Clin. Endocrinol. Metab. 99(2), E276–E285 (2014). https://doi.org/10.1210/jc.2013-2503

    Article  CAS  PubMed  Google Scholar 

  4. R.V. Lloyd, R.Y. Osamura, G. Kloppel, J. Rosai. WHO classification of tumours of endocrine organs. (International Agency for Research on Cancer (IARC), Lyon), 2017)

    Google Scholar 

  5. Y.E. Nikiforov, R.R. Seethala, G. Tallini, Z.W. Baloch, F. Basolo, L.D. Thompson, J.A. Barletta, B.M. Wenig, A. Al Ghuzlan, K. Kakudo, T.J. Giordano, V.A. Alves, E. Khanafshar, S.L. Asa, A.K. El-Naggar, W.E. Gooding, S.P. Hodak, R.V. Lloyd, G. Maytal, O. Mete, M.N. Nikiforova, V. Nose, M. Papotti, D.N. Poller, P.M. Sadow, A.S. Tischler, R.M. Tuttle, K.B. Wall, V.A. LiVolsi, G.W. Randolph, R.A. Ghossein, Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol. 2(8), 1023–1029 (2016). https://doi.org/10.1001/jamaoncol.2016.0386

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cancer Genome Atlas Research, N., Integrated genomic characterization of papillary thyroid carcinoma. Cell 159(3), 676–690 (2014). https://doi.org/10.1016/j.cell.2014.09.050

    Article  CAS  Google Scholar 

  7. D.N. Johnson, L.V. Furtado, B.C. Long, C.J. Zhen, M. Wurst, I. Mujacic, S. Kadri, J.P. Segal, T. Antic, N.A. Cipriani, Noninvasive follicular thyroid neoplasms with papillary-like nuclear features are genetically and biologically similar to adenomatous nodules and distinct from papillary thyroid carcinomas with extensive follicular growth. Arch. Pathol. Lab. Med. 142(7), 838–850 (2018). https://doi.org/10.5858/arpa.2017-0118-OA

    Article  CAS  PubMed  Google Scholar 

  8. J. Liu, B. Singh, G. Tallini, D.L. Carlson, N. Katabi, A. Shaha, R.M. Tuttle, R.A. Ghossein, Follicular variant of papillary thyroid carcinoma: a clinicopathologic study of a problematic entity. Cancer 107(6), 1255–1264 (2006). https://doi.org/10.1002/cncr.22138

    Article  PubMed  Google Scholar 

  9. R.V. Lloyd, S.L. Asa, V.A. LiVolsi, P.M. Sadow, A.S. Tischler, R.A. Ghossein, R.M. Tuttle, Y.E. Nikiforov, The evolving diagnosis of noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP). Hum. Pathol. 74, 1–4 (2018). https://doi.org/10.1016/j.humpath.2017.12.027

    Article  PubMed  Google Scholar 

  10. S.J. Johnson, T.J. Stephenson, D.N. Poller, NIFTP addendum to the RCPath Dataset for thyroid cancer histopathology reports. http://www.ukeps.com/docs/niftp.pdf (2016).

  11. I. Ganly, J. Ricarte Filho, S. Eng, R. Ghossein, L.G. Morris, Y. Liang, N. Socci, K. Kannan, Q. Mo, J.A. Fagin, T.A. Chan, Genomic dissection of Hurthle cell carcinoma reveals a unique class of thyroid malignancy. J. Clin. Endocrinol. Metab. 98(5), E962–E972 (2013). https://doi.org/10.1210/jc.2012-3539

    Article  PubMed  PubMed Central  Google Scholar 

  12. J. Rosai, R.A. DeLellis, M.L. Carcangiu, W.J. Frable, T. Giovanni. Tumor of the thyroid and parathyroid gland (AFIP atlas of tumor pathology series 4). (American Registry of Pathology Press, Silver Spring, MD), 2015)

    Google Scholar 

  13. D.T. Cheng, T.N. Mitchell, A. Zehir, R.H. Shah, R. Benayed, A. Syed, R. Chandramohan, Z.Y. Liu, H.H. Won, S.N. Scott, A.R. Brannon, C. O’Reilly, J. Sadowska, J. Casanova, A. Yannes, J.F. Hechtman, J. Yao, W. Song, D.S. Ross, A. Oultache, S. Dogan, L. Borsu, M. Hameed, K. Nafa, M.E. Arcila, M. Ladanyi, M.F. Berger, Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J. Mol. Diagn. 17(3), 251–264 (2015). https://doi.org/10.1016/j.jmoldx.2014.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. L.G. Morris, R. Chandramohan, L. West, A. Zehir, D. Chakravarty, D.G. Pfister, R.J. Wong, N.Y. Lee, E.J. Sherman, S.S. Baxi, I. Ganly, B. Singh, J.P. Shah, A.R. Shaha, J.O. Boyle, S.G. Patel, B.R. Roman, C.A. Barker, S.M. McBride, T.A. Chan, S. Dogan, D.M. Hyman, M.F. Berger, D.B. Solit, N. Riaz, A.L. Ho. The molecular landscape of recurrent and metastatic head and neck cancers: insights from a precision oncology sequencing platform. JAMA Oncol. 3(2), 244–255 (2017). https://doi.org/10.1001/jamaoncol.2016.1790

  15. J.T. Robinson, H. Thorvaldsdottir, W. Winckler, M. Guttman, E.S. Lander, G. Getz, J.P. Mesirov, Integrative genomics viewer. Nat. Biotechnol. 29(1), 24–26 (2011). https://doi.org/10.1038/nbt.1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. R. Shen, V.E. Seshan, FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing. Nucleic Acids Res. 44(16), e131 (2016). https://doi.org/10.1093/nar/gkw520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. I. Ganly, V. Makarov, S. Deraje, Y. Dong, E. Reznik, V. Seshan, G. Nanjangud, S. Eng, P. Bose, F. Kuo, L.G.T. Morris, I. Landa, P.B. Carrillo Albornoz, N. Riaz, Y.E. Nikiforov, K. Patel, C. Umbricht, M. Zeiger, E. Kebebew, E. Sherman, R. Ghossein, J.A. Fagin, T.A. Chan, Integrated genomic analysis of hurthle cell cancer reveals oncogenic drivers, recurrent mitochondrial mutations, and unique chromosomal landscapes. Cancer Cell. 34(2), 256–270.e255 (2018). https://doi.org/10.1016/j.ccell.2018.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, The Sequence Alignment/Map format and SAMtools. Bioinformatics 25(16), 2078–2079 (2009). https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. E. Reznik, Q. Wang, K. La, N. Schultz, C. Sander, Mitochondrial respiratory gene expression is suppressed in many cancers. eLife 6, PMID: 28099114 (2017). https://doi.org/10.7554/eLife.21592

  20. B.R. Haugen, A.M. Sawka, E.K. Alexander, K.C. Bible, P. Caturegli, G.M. Doherty, S.J. Mandel, J.C. Morris, A. Nassar, F. Pacini, M. Schlumberger, K. Schuff, S.I. Sherman, H. Somerset, J.A. Sosa, D.L. Steward, L. Wartofsky, M.D. Williams, American Thyroid Association Guidelines on the Management of Thyroid Nodules and Differentiated Thyroid Cancer Task Force Review and Recommendation on the Proposed Renaming of Encapsulated Follicular Variant Papillary Thyroid Carcinoma Without Invasion to Noninvasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features. Thyroid. 27(4), 481–483 (2017). https://doi.org/10.1089/thy.2016.0628

    Article  CAS  PubMed  Google Scholar 

  21. B.R.M. Haugen, E.K. Alexander, K.C. Bible, G. Doherty, S.J. Mandel, Y.E. Nikiforov, F. Pacini, G. Randolph, A. Sawka, M. Schlumberger, K.G. Schuff, S.I. Sherman, J.A. Sosa, D. Steward, R.M.M. Tuttle, L. Wartofsky, 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 26, 1–133 (2016). https://doi.org/10.1089/thy.2015.0020

    Article  PubMed  PubMed Central  Google Scholar 

  22. E.L. Mazzaferri, S.M. Jhiang, Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am. J. Med. 97(5), 418–428 (1994)

    Article  CAS  PubMed  Google Scholar 

  23. J.F. Nwatsock, D. Taieb, F.D. Zok, O. Mundler, Late recurrences of thyroid carcinoma 24 years after a complete remission: when monitoring should be stopped? World J. Nucl. Med. 11(1), 42–43 (2012). https://doi.org/10.4103/1450-1147.98749

    Article  PubMed  PubMed Central  Google Scholar 

  24. L.D. Thompson, Ninety-four cases of encapsulated follicular variant of papillary thyroid carcinoma: a name change to noninvasive follicular thyroid neoplasm with papillary-like nuclear features would help prevent overtreatment. Mod. Pathol. 29(7), 698–707 (2016). https://doi.org/10.1038/modpathol.2016.65

    Article  CAS  PubMed  Google Scholar 

  25. M. Rivera, J. Ricarte-Filho, J. Knauf, A. Shaha, M. Tuttle, J.A. Fagin, R.A. Ghossein, Molecular genotyping of papillary thyroid carcinoma follicular variant according to its histological subtypes (encapsulated vs infiltrative) reveals distinct BRAF and RAS mutation patterns. Mod. Pathol. 23(9), 1191–1200 (2010). https://doi.org/10.1038/modpathol.2010.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. M. Rivera, R.M. Tuttle, S. Patel, A. Shaha, J.P. Shah, R.A. Ghossein, Encapsulated papillary thyroid carcinoma: a clinico-pathologic study of 106 cases with emphasis on its morphologic subtypes (histologic growth pattern). Thyroid 19(2), 119–127 (2009). https://doi.org/10.1089/thy.2008.0303

    Article  PubMed  Google Scholar 

  27. E. Cerami, J. Gao, U. Dogrusoz, B.E. Gross, S.O. Sumer, B.A. Aksoy, A. Jacobsen, C.J. Byrne, M.L. Heuer, E. Larsson, Y. Antipin, B. Reva, A.P. Goldberg, C. Sander, N. Schultz, The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2(5), 401–404 (2012). https://doi.org/10.1158/2159-8290.cd-12-0095

    Article  PubMed  Google Scholar 

  28. G. Tallini, A. Hsueh, S. Liu, G. Garcia-Rostan, M.R. Speicher, D.C. Ward, Frequent chromosomal DNA unbalance in thyroid oncocytic (Hurthle cell) neoplasms detected by comparative genomic hybridization. Lab. Invest. 79(5), 547–555 (1999)

    CAS  PubMed  Google Scholar 

  29. J. Gao, B.A. Aksoy, U. Dogrusoz, G. Dresdner, B. Gross, S.O. Sumer, Y. Sun, A. Jacobsen, R. Sinha, E. Larsson, E. Cerami, C. Sander, N. Schultz, Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6(269), pl1 (2013). https://doi.org/10.1126/scisignal.2004088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. G. Gasparre, E. Bonora, G. Tallini, G. Romeo, Molecular features of thyroid oncocytic tumors. Mol. Cell. Endocrinol. 321(1), 67–76 (2010). https://doi.org/10.1016/j.mce.2010.02.022

    Article  CAS  PubMed  Google Scholar 

  31. E. Bonora, A.M. Porcelli, G. Gasparre, A. Biondi, A. Ghelli, V. Carelli, A. Baracca, G. Tallini, A. Martinuzzi, G. Lenaz, M. Rugolo, G. Romeo, Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III. Cancer Res. 66(12), 6087–6096 (2006). https://doi.org/10.1158/0008-5472.can-06-0171

    Article  CAS  PubMed  Google Scholar 

  32. G. Gasparre, A.M. Porcelli, E. Bonora, L.F. Pennisi, M. Toller, L. Iommarini, A. Ghelli, M. Moretti, C.M. Betts, G.N. Martinelli, A.R. Ceroni, F. Curcio, V. Carelli, M. Rugolo, G. Tallini, G. Romeo, Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proc. Natl Acad. Sci. USA 104(21), 9001–9006 (2007). https://doi.org/10.1073/pnas.0703056104

    Article  CAS  PubMed  Google Scholar 

  33. V. Maximo, T. Botelho, J. Capela, P. Soares, J. Lima, A. Taveira, T. Amaro, A.P. Barbosa, A. Preto, H.R. Harach, D. Williams, M. Sobrinho-Simoes, Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hurthle cell) tumours of the thyroid. Br. J. Cancer 92(10), 1892–1898 (2005). https://doi.org/10.1038/sj.bjc.6602547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. N. Wada, Q.Y. Duh, D. Miura, L. Brunaud, M.G. Wong, O.H. Clark, Chromosomal aberrations by comparative genomic hybridization in hurthle cell thyroid carcinomas are associated with tumor recurrence. J. Clin. Endocrinol. Metab. 87(10), 4595–4601 (2002). https://doi.org/10.1210/jc.2002-020339

    Article  CAS  PubMed  Google Scholar 

  35. I. Ganly, L. Wang, R.M. Tuttle, N. Katabi, G.A. Ceballos, H.R. Harach, R. Ghossein, Invasion rather than nuclear features correlates with outcome in encapsulated follicular tumors: further evidence for the reclassification of the encapsulated papillary thyroid carcinoma follicular variant. Hum. Pathol. 46(5), 657–664 (2015). https://doi.org/10.1016/j.humpath.2015.01.010

    Article  PubMed  PubMed Central  Google Scholar 

  36. B. Xu, G. Tallini, T. Scognamiglio, B.R. Roman, R.M. Tuttle, R.A. Ghossein, Outcome of large noninvasive follicular thyroid neoplasm with papillary-like nuclear features. Thyroid. 27(4), 512–517 (2017). https://doi.org/10.1089/thy.2016.0649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Research reported in this publication was supported in part by the Cancer Center Support Grant of the National Institutes of Health/National Cancer Institute under award number P30CA008748. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Research reported in this publication was also supported in part by an Italian Government-Ministero della Salute Grant No. RF-2011-02350857 (to G.T.)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronald Ghossein or Ian Ganly.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Reznik, E., Tuttle, R.M. et al. Outcome and molecular characteristics of non-invasive encapsulated follicular variant of papillary thyroid carcinoma with oncocytic features. Endocrine 64, 97–108 (2019). https://doi.org/10.1007/s12020-019-01848-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-019-01848-6

Keywords

Navigation