Skip to main content
Log in

Metabolomics signature associated with circulating serum selenoprotein P levels

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Selenoprotein P (SELENOP) has been previously related to various metabolic traits with partially conflicting results. The identification of SELENOP-associated metabolites, using an untargeted metabolomics approach, may provide novel biological insights relevant to disentangle the role of SELENOP in human health.

Methods

In this cross-sectional study, 572 serum metabolites were identified by comparing the obtained LC–MS/MS spectra with spectra stored in Metabolon’s spectra library. Serum SELENOP levels were measured in 832 men and women using an ELISA kit.

Results

Circulating SELENOP levels were associated with 24 out of 572 metabolites after accounting for the number of independent dimensions in the metabolomics data, including inverse associations with alanine, glutamate, leucine, isoleucine and valine, an unknown compound X-12063, urate and the peptides gamma-glutamyl-leucine, and N-acetylcarnosine. Positive associations were observed between SELENOP and several lipid compounds. Of the identified metabolites, each standard deviation increase in the branched-chain amino acids (isoleucine, leucine, valine), alanine and gamma-glutamyl-leucine was related to higher odds of having T2DM [OR (95% CI): 1.96 (1.41–2.73); 1.62 (1.15–2.28); 1.94 (1.45–2.60), 1.57 (1.17–2.11), and 1.52 (1.13–2.05), respectively].

Conclusions

Higher serum SELENOP levels were associated with an overall healthy metabolomics profile, which may provide further insights into potential mechanisms of SELENOP-associated metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. R.F. Burk, K.E. Hill, Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu. Rev. Nutr. 25, 215–235 (2005). https://doi.org/10.1146/annurev.nutr.24.012003.132120

    Article  CAS  PubMed  Google Scholar 

  2. H. Misu, T. Takamura, H. Takayama, H. Hayashi, N. Matsuzawa-Nagata, S. Kurita, K. Ishikura, H. Ando, Y. Takeshita, T. Ota, M. Sakurai, T. Yamashita, E. Mizukoshi, M. Honda, K. Miyamoto, T. Kubota, N. Kubota, T. Kadowaki, H.J. Kim, I.K. Lee, Y. Minokoshi, Y. Saito, K. Takahashi, Y. Yamada, N. Takakura, S. Kaneko, A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell. Metab. 12(5), 483–495 (2010). https://doi.org/10.1016/j.cmet.2010.09.015

    Article  CAS  PubMed  Google Scholar 

  3. S.J. Yang, S.Y. Hwang, H.Y. Choi, H.J. Yoo, J.A. Seo, S.G. Kim, N.H. Kim, S.H. Baik, D.S. Choi, K.M. Choi, Serum selenoprotein P levels in patients with type 2 diabetes and prediabetes: implications for insulin resistance, inflammation, and atherosclerosis. J. Clin. Endocrinol. Metab. 96(8), E1325–E1329 (2011). https://doi.org/10.1210/jc.2011-0620

    Article  CAS  PubMed  Google Scholar 

  4. H. Misu, K. Ishikura, S. Kurita, Y. Takeshita, T. Ota, Y. Saito, K. Takahashi, S. Kaneko, T. Takamura, Inverse correlation between serum levels of selenoprotein P and adiponectin in patients with type 2 diabetes. PLoS ONE. 7(4), e34952 (2012). https://doi.org/10.1371/journal.pone.0034952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. R. di Giuseppe, M. Koch, S. Schlesinger, J. Borggrefe, M. Both, H.P. Muller, J. Kassubek, G. Jacobs, U. Nothlings, W. Lieb, Circulating selenoprotein P levels in relation to MRI-derived body fat volumes, liver fat content, and metabolic disorders. Obesity. 25(6), 1128–1135 (2017). https://doi.org/10.1002/oby.21841

    Article  CAS  PubMed  Google Scholar 

  6. M. Gharipour, M. Sadeghi, M. Salehi, M. Behmanesh, E. Khosravi, M. Dianatkhah, S. Haghjoo Javanmard, R. Razavi, A. Gharipour, Association of expression of selenoprotein P in mRNA and protein levels with metabolic syndrome in subjects with cardiovascular disease: Results of the Selenegene study. J. Gene Med. 19(3) (2017). https://doi.org/10.1002/jgm.2945

  7. B.J. Ko, S.M. Kim, K.H. Park, H.S. Park, C.S. Mantzoros, Levels of circulating selenoprotein P, fibroblast growth factor (FGF) 21 and FGF23 in relation to the metabolic syndrome in young children. Int. J. Obes. 38(12), 1497–1502 (2014). https://doi.org/10.1038/ijo.2014.45

    Article  CAS  Google Scholar 

  8. H.Y. Choi, S.Y. Hwang, C.H. Lee, H.C. Hong, S.J. Yang, H.J. Yoo, J.A. Seo, S.G. Kim, N.H. Kim, S.H. Baik, D.S. Choi, K.M. Choi, Increased selenoprotein p levels in subjects with visceral obesity and nonalcoholic fatty liver disease. Diabetes Metab. J. 37(1), 63–71 (2013). https://doi.org/10.4093/dmj.2013.37.1.63

    Article  PubMed  PubMed Central  Google Scholar 

  9. A.N. Ogawa-Wong, M.J. Berry, L.A. Seale, Selenium and metabolic disorders: an emphasis on type 2 diabetes risk. Nutrients 8(2), 80 (2016). https://doi.org/10.3390/nu8020080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. J. Mao, W. Teng, The relationship between selenoprotein P and glucose metabolism in experimental studies. Nutrients 5(6), 1937–1948 (2013). https://doi.org/10.3390/nu5061937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. K. Hesse-Bahr, I. Dreher, J. Kohrle, The influence of the cytokines Il-1beta and INFgamma on the expression of selenoproteins in the human hepatocarcinoma cell line HepG2. Biofactors 11(1-2), 83–85 (2000)

    Article  CAS  PubMed  Google Scholar 

  12. H. Traulsen, H. Steinbrenner, D.P. Buchczyk, L.O. Klotz, H. Sies, Selenoprotein P protects low-density lipoprotein against oxidation. Free Radic. Res. 38(2), 123–128 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. H. Steinbrenner, E. Bilgic, L. Alili, H. Sies, P. Brenneisen, Selenoprotein P protects endothelial cells from oxidative damage by stimulation of glutathione peroxidase expression and activity. Free. Radic. Res. 40(9), 936–943 (2006). https://doi.org/10.1080/10715760600806248

    Article  CAS  PubMed  Google Scholar 

  14. C.D. Davis, P.A. Tsuji, J.A. Milner, Selenoproteins and cancer prevention. Annu. Rev. Nutr. 32, 73–95 (2012). https://doi.org/10.1146/annurev-nutr-071811-150740

    Article  CAS  PubMed  Google Scholar 

  15. Y. Saito, N. Sato, M. Hirashima, G. Takebe, S. Nagasawa, K. Takahashi, Domain structure of bi-functional selenoprotein P. Biochem. J. 381(Pt 3), 841–846 (2004). https://doi.org/10.1042/BJ20040328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. U. Nothlings, M. Krawczak, PopGen. A population-based biobank with prospective follow-up of a control group. Bundesgesundheitsblatt. Gesundh. Gesundh. 55(6-7), 831–835 (2012). https://doi.org/10.1007/s00103-012-1487-2

    Article  CAS  Google Scholar 

  17. M. Koch, J. Borggrefe, J. Barbaresko, G. Groth, G. Jacobs, S. Siegert, W. Lieb, M.J. Muller, A. Bosy-Westphal, M. Heller, U. Nothlings, Dietary patterns associated with magnetic resonance imaging-determined liver fat content in a general population study. Am. J. Clin. Nutr. 99(2), 369–377 (2014). https://doi.org/10.3945/ajcn.113.070219

    Article  CAS  PubMed  Google Scholar 

  18. M. Koch, S. Freitag-Wolf, S. Schlesinger, J. Borggrefe, J.R. Hov, M.K. Jensen, J. Pick, M.R.P. Markus, T. Hopfner, G. Jacobs, S. Siegert, A. Artati, G. Kastenmuller, W. Romisch-Margl, J. Adamski, T. Illig, M. Nothnagel, T.H. Karlsen, S. Schreiber, A. Franke, M. Krawczak, U. Nothlings, W. Lieb, Serum metabolomic profiling highlights pathways associated with liver fat content in a general population sample. Eur. J. Clin. Nutr. 71(8), 995–1001 (2017). https://doi.org/10.1038/ejcn.2017.43

    Article  CAS  PubMed  Google Scholar 

  19. C.D. Dehaven, A.M. Evans, H. Dai, K.A. Lawton, Organization of GC/MS and LC/MS metabolomics data into chemical libraries. J. Chemin-. 2(1), 9 (2010). https://doi.org/10.1186/1758-2946-2-9

    Article  CAS  Google Scholar 

  20. K. Fischer, D. Moewes, M. Koch, H.P. Muller, G. Jacobs, J. Kassubek, W. Lieb, U. Nothlings, MRI-determined total volumes of visceral and subcutaneous abdominal and trunk adipose tissue are differentially and sex-dependently associated with patterns of estimated usual nutrient intake in a northern German population. Am. J. Clin. Nutr. 101(4), 794–807 (2015). https://doi.org/10.3945/ajcn.114.101626

    Article  CAS  PubMed  Google Scholar 

  21. J. Barbaresko, S. Siegert, M. Koch, I. Aits, W. Lieb, S. Nikolaus, M. Laudes, G. Jacobs, U. Nothlings, Comparison of two exploratory dietary patterns in association with the metabolic syndrome in a Northern German population. Br. J. Nutr. 112(8), 1364–1372 (2014). https://doi.org/10.1017/S0007114514002098

    Article  CAS  PubMed  Google Scholar 

  22. B.E. Ainsworth, W.L. Haskell, S.D. Herrmann, N. Meckes, D.R. Bassett Jr., C. Tudor-Locke, J.L. Greer, J. Vezina, M.C. Whitt-Glover, A.S. Leon, 2011 Compendium of physical activities: a second update of codes and MET values. Med. Sci. Sports Exerc. 43(8), 1575–1581 (2011). https://doi.org/10.1249/MSS.0b013e31821ece12

    Article  PubMed  Google Scholar 

  23. K.G. Alberti, R.H. Eckel, S.M. Grundy, P.Z. Zimmet, J.I. Cleeman, K.A. Donato, J.C. Fruchart, W.P. James, C.M. Loria, S.C. Smith Jr., International Diabetes Federation Task Force on Epidemiology and Prevention; Hational Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity, Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120(16), 1640–1645 (2009). https://doi.org/10.1161/CIRCULATIONAHA.109.192644

    Article  CAS  PubMed  Google Scholar 

  24. R. Wehrens, J.A. Hageman, F. van Eeuwijk, R. Kooke, P.J. Flood, E. Wijnker, J.J. Keurentjes, A. Lommen, H.D. van Eekelen, R.D. Hall, R. Mumm, R.C. de Vos, Improved batch correction in untargeted MS-based metabolomics. Metabolomics 12, 88 2016). https://doi.org/10.1007/s11306-016-1015-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. S.M. Nelson, O.A. Panagiotou, G.M. Anic, A.M. Mondul, S. Mannisto, S.J. Weinstein, D. Albanes, Metabolomics analysis of serum 25-hydroxy-vitamin D in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. Int. J. Epidemiol. 45(5), 1458–1468 (2016). https://doi.org/10.1093/ije/dyw148

    Article  PubMed  PubMed Central  Google Scholar 

  26. C.B. Newgard, J. An, J.R. Bain, M.J. Muehlbauer, R.D. Stevens, L.F. Lien, A.M. Haqq, S.H. Shah, M. Arlotto, C.A. Slentz, J. Rochon, D. Gallup, O. Ilkayeva, B.R. Wenner, W.S. Yancy Jr., H. Eisenson, G. Musante, R.S. Surwit, D.S. Millington, M.D. Butler, L.P. Svetkey, A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell. Metab. 9(4), 311–326 (2009). 10.1016/j.cmet.2009.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. O. Zhenyukh, E. Civantos, M. Ruiz-Ortega, M.S. Sanchez, C. Vazquez, C. Peiro, J. Egido, S. Mas, High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation. Free Radic. Biol. Med. 104, 165–177 (2017). https://doi.org/10.1016/j.freeradbiomed.2017.01.009

    Article  CAS  PubMed  Google Scholar 

  28. C.J. Lynch, S.H. Adams, Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 10(12), 723–736 (2014). https://doi.org/10.1038/nrendo.2014.171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. S. Cheng, E.P. Rhee, M.G. Larson, G.D. Lewis, E.L. McCabe, D. Shen, M.J. Palma, L.D. Roberts, A. Dejam, A.L. Souza, A.A. Deik, M. Magnusson, C.S. Fox, C.J. O’Donnell, R.S. Vasan, O. Melander, C.B. Clish, R.E. Gerszten, T.J. Wang, Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation 125(18), 2222–2231 (2012). https://doi.org/10.1161/CIRCULATIONAHA.111.067827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. M.A. Reeves, P.R. Hoffmann, The human selenoproteome: recent insights into functions and regulation. Cell. Mol. Life Sci. 66(15), 2457–2478 (2009). https://doi.org/10.1007/s00018-009-0032-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. K. Renko, P.J. Hofmann, M. Stoedter, B. Hollenbach, T. Behrends, J. Kohrle, U. Schweizer, L. Schomburg, Down-regulation of the hepatic selenoprotein biosynthesis machinery impairs selenium metabolism during the acute phase response in mice. FASEB J. 23(6), 1758–1765 (2009). https://doi.org/10.1096/fj.08-119370

    Article  CAS  PubMed  Google Scholar 

  32. W.E. Gall, K. Beebe, K.A. Lawton, K.P. Adam, M.W. Mitchell, P.J. Nakhle, J.A. Ryals, M.V. Milburn, M. Nannipieri, S. Camastra, A. Natali, E. Ferrannini, alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS. One. 5(5), e10883 (2010). https://doi.org/10.1371/journal.pone.0010883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. J. Cobb, A. Eckhart, A. Motsinger-Reif, B. Carr, L. Groop, E. Ferrannini, alpha-Hydroxybutyric acid is a selective metabolite biomarker of impaired glucose tolerance. Diabetes Care 39(6), 988–995 (2016). https://doi.org/10.2337/dc15-2752

    Article  CAS  PubMed  Google Scholar 

  34. G. Peddinti, J. Cobb, L. Yengo, P. Froguel, J. Kravic, B. Balkau, T. Tuomi, T. Aittokallio, L. Groop, Early metabolic markers identify potential targets for the prevention of type 2 diabetes. Diabetologia 60(9), 1740–1750 (2017). https://doi.org/10.1007/s00125-017-4325-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. W. Koenig, C. Meisinger, Uric acid, type 2 diabetes, and cardiovascular diseases: fueling the common soil hypothesis? Clin. Chem. 54(2), 231–233 (2008). https://doi.org/10.1373/clinchem.2007.099705

    Article  CAS  PubMed  Google Scholar 

  36. A.M. Evans, C.D. DeHaven, T. Barrett, M. Mitchell, E. Milgram, Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal. Chem. 81(16), 6656–6667 (2009). https://doi.org/10.1021/ac901536h

    Article  CAS  PubMed  Google Scholar 

  37. S.C. Kalhan, L. Guo, J. Edmison, S. Dasarathy, A.J. McCullough, R.W. Hanson, M. Milburn, Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism 60(3), 404–413 (2011). https://doi.org/10.1016/j.metabol.2010.03.006

    Article  CAS  PubMed  Google Scholar 

  38. Y. Zhang, X. Chen, Reducing selenoprotein P expression suppresses adipocyte differentiation as a result of increased preadipocyte inflammation. Am. J. Physiol. Endocrinol. Metab. 300(1), E77–E85 (2011). https://doi.org/10.1152/ajpendo.00380.2010

    Article  CAS  PubMed  Google Scholar 

  39. G. Mingrone, L. Castagneto-Gissey, K. Mace, Use of dicarboxylic acids in type 2 diabetes. Br. J. Clin. Pharmacol. 75(3), 671–676 (2013). https://doi.org/10.1111/j.1365-2125.2012.04177.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. M.L. Garg, R.J. Blake, R.B. Wills, Macadamia nut consumption lowers plasma total and LDL cholesterol levels in hypercholesterolemic men. J. Nutr. 133(4), 1060–1063 (2003)

    Article  CAS  PubMed  Google Scholar 

  41. K. Nagao, T. Yanagita, Medium-chain fatty acids: functional lipids for the prevention and treatment of the metabolic syndrome. Pharmacol. Res. 61(3), 208–212 (2010). https://doi.org/10.1016/j.phrs.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  42. R.N. Lemaitre, A.M. Fretts, C.M. Sitlani, M.L. Biggs, K. Mukamal, I.B. King, X. Song, L. Djousse, D.S. Siscovick, B. McKnight, N. Sotoodehnia, J.R. Kizer, D. Mozaffarian, Plasma phospholipid very-long-chain saturated fatty acids and incident diabetes in older adults: the Cardiovascular Health Study. Am. J. Clin. Nutr. 101(5), 1047–1054 (2015). https://doi.org/10.3945/ajcn.114.101857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. R. di Giuseppe, S. Plachta-Danielzik, M. Koch, U. Nothlings, S. Schlesinger, J. Borggrefe, M. Both, H.P. Muller, J. Kassubek, G. Jacobs, W. Lieb, Dietary pattern associated with selenoprotein P and MRI-derived body fat volumes, liver signal intensity, and metabolic disorders. Eur. J. Nutr. (2018). https://doi.org/10.1007/s00394-018-1624-2

  44. A.E. Altinova, O.T. Iyidir, C. Ozkan, D. Ors, M. Ozturk, O. Gulbahar, N. Bozkurt, F.B. Toruner, M. Akturk, N. Cakir, M. Arslan, Selenoprotein P is not elevated in gestational diabetes mellitus. Gynecol. Endocrinol. 31(11), 874–876 (2015). https://doi.org/10.3109/09513590.2015.1103220

    Article  CAS  PubMed  Google Scholar 

  45. E. Ferrannini, A. Natali, S. Camastra, M. Nannipieri, A. Mari, K.P. Adam, M.V. Milburn, G. Kastenmuller, J. Adamski, T. Tuomi, V. Lyssenko, L. Groop, W.E. Gall, Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance. Diabetes 62(5), 1730–1737 (2013). https://doi.org/10.2337/db12-0707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Y. Saito, T. Hayashi, A. Tanaka, Y. Watanabe, M. Suzuki, E. Saito, K. Takahashi, Selenoprotein P in human plasma as an extracellular phospholipid hydroperoxide glutathione peroxidase. Isolation and enzymatic characterization of human selenoprotein p. J. Biol. Chem. 274(5), 2866–2871 (1999)

    Article  CAS  PubMed  Google Scholar 

  47. R. Stoffaneller, N.L. Morse, A review of dietary selenium intake and selenium status in Europe and the Middle East. Nutrients 7(3), 1494–1537 (2015). nu7031494[pii]10.3390/nu7031494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The PopGen 2.0 network is supported by the German Federal Ministry of Education and Research [Grant Number 01EY1103]. R.d.G. is supported by the Deutsche Forschungsgemeinschaft Excellence Cluster “Inflammation at Interfaces” (Grant EXC306/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romina di Giuseppe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study procedures have been approved by the Ethics Committee of the Medical Faculty of the University of Kiel, Germany.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

di Giuseppe, R., Koch, M., Nöthlings, U. et al. Metabolomics signature associated with circulating serum selenoprotein P levels. Endocrine 64, 486–495 (2019). https://doi.org/10.1007/s12020-018-1816-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-018-1816-9

Keywords

Navigation