Hormonal aggressiveness according to the expression of cellular markers in corticotroph adenomas

Abstract

Purpose

The molecular mechanisms underlying tumor growth in Cushing’s disease (CD) still remain a challenge. Moreover, clinical manifestations of CD may vary depending on hormonal activity; however, factors involved in the hormonal aggressiveness of adrenocorticotropic hormone (ACTH)-secreting pituitary tumors have not been fully clarified. We investigated the association between the expression of cellular markers regarding pituitary tumor progression and initial or postoperative hormone levels in patients with CD.

Methods

Tumor tissues from 28 corticotroph adenomas (female 26, male 2, mean age 39.21 ± 10.39 years) were subject to immunohistochemical study using the following antibodies: pituitary tumor-transforming gene 1 (PTTG1), cyclin D1, p16, p27, brahma related-gene 1 (Brg1), and Ki-67. We then analyzed the relationship between each cellular marker expression and hormone levels, including 24 h urinary free cortisol (UFC), plasma ACTH, and serum cortisol.

Results

PTTG1 and Ki-67 were expressed in 100% and 50% of patients, respectively. However, the levels did not reflect initial hormonal activity. The cyclin D1-negative group showed higher serum cortisol levels compared to the cyclin D1-positive group (p = 0.01). The 24 h UFC levels were significantly higher in the p27-negative group than in the p27-positive group (p = 0.04), whereas the Brg1-positive group revealed higher serum cortisol levels than in the Brg1-negative group (p = 0.02).

Conclusions

Although PTTG1 and Ki-67 play an essential role in developing ACTH-secreting tumors, cyclin D1, p27, and Brg1 may be better biomarkers to determine hormonal aggressiveness of the tumor. Further research is needed to understand the influence of cellular markers on hormonal activity in CD.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    M. De Martin, F. Pecori Giraldi, F. Cavagnini, Cushing’s disease. Pituitary 9, 279–287 (2006)

    Article  PubMed  Google Scholar 

  2. 2.

    J.J. Acebes, J. Martino, C. Masuet, E. Montanya, J. Soler, Early post-operative ACTH and cortisol as predictors of remission in Cushing’s disease. Acta Neurochir. 149, 471–477 (2007). discussion 477-479

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    G. Aranda, J. Ensenat, M. Mora, M. Puig-Domingo, M.J. Martinez de Osaba, G. Casals, E. Verger, M.T. Ribalta, F.A. Hanzu, I. Halperin, Long-term remission and recurrence rate in a cohort of Cushing’s disease: the need for long-term follow-up. Pituitary 18, 142–149 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Z.K. Hassan-Smith, M. Sherlock, R.C. Reulen, W. Arlt, J. Ayuk, A.A. Toogood, M.S. Cooper, A.P. Johnson, P.M. Stewart, Outcome of Cushing’s disease following transsphenoidal surgery in a single center over 20 years. J. Clin. Endocrinol. Metab. 97, 1194–1201 (2012)

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    K.Y. Hur, J.H. Kim, B.J. Kim, M.S. Kim, E.J. Lee, S.W. Kim, Clinical guidelines for the diagnosis and treatment of Cushing’s disease in Korea. Endocrinol. Metab. 30, 7–18 (2015)

    Article  CAS  Google Scholar 

  6. 6.

    B.M. Biller, A.B. Grossman, P.M. Stewart, S. Melmed, X. Bertagna, J. Bertherat, M. Buchfelder, A. Colao, A.R. Hermus, L.J. Hofland, A. Klibanski, A. Lacroix, J.R. Lindsay, J. Newell-Price, L.K. Nieman, S. Petersenn, N. Sonino, G.K. Stalla, B. Swearingen, M.L. Vance, J.A. Wass, M. Boscaro, Treatment of adrenocorticotropin-dependent Cushing’s syndrome: a consensus statement. J. Clin. Endocrinol. Metab. 93, 2454–2462 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    J.K. Lambert, L. Goldberg, S. Fayngold, J. Kostadinov, K.D. Post, E.B. Geer, Predictors of mortality and long-term outcomes in treated Cushing’s disease: a study of 346 patients. J. Clin. Endocrinol. Metab. 98, 1022–1030 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    N. Hameed, C.G. Yedinak, J. Brzana, S.H. Gultekin, N.D. Coppa, A. Dogan, J.B. Delashaw, M. Fleseriu, Remission rate after transsphenoidal surgery in patients with pathologically confirmed Cushing’s disease, the role of cortisol, ACTH assessment and immediate reoperation: a large single center experience. Pituitary 16, 452–458 (2013)

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    D. Lau, C. Rutledge, M.K. Aghi, Cushing’s disease: current medical therapies and molecular insights guiding future therapies. Neurosurg. Focus 38, E11 (2015)

    Article  PubMed  Google Scholar 

  10. 10.

    C.G. Patil, D.M. Prevedello, S.P. Lad, M.L. Vance, M.O. Thorner, L. Katznelson, E.R. Laws Jr., Late recurrences of Cushing’s disease after initial successful transsphenoidal surgery. J. Clin. Endocrinol. Metab. 93, 358–362 (2008)

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    N. Sonino, M. Zielezny, G.A. Fava, F. Fallo, M. Boscaro, Risk factors and long-term outcome in pituitary-dependent Cushing’s disease. J. Clin. Endocrinol. Metab. 81, 2647–2652 (1996)

    CAS  PubMed  Google Scholar 

  12. 12.

    S.L. Asa, S. Ezzat, The pathogenesis of pituitary tumors. Annu. Rev. Pathol. 4, 97–126 (2009)

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    J. Seltzer, C.E. Ashton, T.C. Scotton, D. Pangal, J.D. Carmichael, G. Zada, Gene and protein expression in pituitary corticotroph adenomas: a systematic review of the literature. Neurosurg. Focus 38, E17 (2015)

    Article  PubMed  Google Scholar 

  14. 14.

    C.H. Kuo, S.R. Shih, H.Y. Li, S.C. Chen, P.J. Hung, F.Y. Tseng, T.C. Chang, Adrenocorticotropic hormone levels before treatment predict recurrence of Cushing’s disease. J. Formos. Med. Assoc. 116, 441–447 (2017)

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    F. Esposito, J.R. Dusick, P. Cohan, P. Moftakhar, D. McArthur, C. Wang, R.S. Swerdloff, D.F. Kelly, Clinical review: early morning cortisol levels as a predictor of remission after transsphenoidal surgery for Cushing’s disease. J. Clin. Endocrinol. Metab. 91, 7–13 (2006)

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    R.N. Clayton, D. Raskauskiene, R.C. Reulen, P.W. Jones, Mortality and morbidity in Cushing’s disease over 50 years in Stoke-on-Trent, UK: audit and meta-analysis of literature. J. Clin. Endocrinol. Metab. 96, 632–642 (2011)

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    J.S. Lim, S.K. Lee, S.H. Kim, E.J. Lee, S.H. Kim, Intraoperative multiple-staged resection and tumor tissue identification using frozen sections provide the best result for the accurate localization and complete resection of tumors in Cushing’s disease. Endocrine 40, 452–461 (2011)

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    A. Ayala, A.J. Manzano, Detection of recurrent Cushing’s disease: proposal for standardized patient monitoring following transsphenoidal surgery. J. Neurooncol. 119, 235–242 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    E.H. Oldfield, J.L. Doppman, L.K. Nieman, G.P. Chrousos, D.L. Miller, D.A. Katz, G.B. Cutler Jr., D.L. Loriaux, Petrosal sinus sampling with and without corticotropin-releasing hormone for the differential diagnosis of Cushing’s syndrome. N. Engl. J. Med. 325, 897–905 (1991)

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    T.W. Noh, H.J. Jeong, M.K. Lee, T.S. Kim, S.H. Kim, E.J. Lee, Predicting recurrence of nonfunctioning pituitary adenomas. J. Clin. Endocrinol. Metab. 94, 4406–4413 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    R. Gejman, B. Swearingen, E.T. Hedley-Whyte, Role of Ki-67 proliferation index and p53 expression in predicting progression of pituitary adenomas. Hum. Pathol. 39, 758–766 (2008)

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    J.R. Lindsay, E.H. Oldfield, C.A. Stratakis, L.K. Nieman, The postoperative basal cortisol and CRH tests for prediction of long-term remission from Cushing’s disease after transsphenoidal surgery. J. Clin. Endocrinol. Metab. 96, 2057–2064 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    A.V. Pendharkar, E.S. Sussman, A.L. Ho, M.G. Hayden Gephart, L. Katznelson, Cushing’s disease: predicting long-term remission after surgical treatment. Neurosurg. Focus 38, E13 (2015)

    Article  PubMed  Google Scholar 

  24. 24.

    E. Fernandez-Rodriguez, P.M. Stewart, M.S. Cooper, The pituitary-adrenal axis and body composition. Pituitary 12, 105–115 (2009)

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    H. Cushing, The basophil adenomas of the pituitary body and their clinical manifestations (pituitary basophilism). Bull. Johns. Hopkins Hosp. 50, 137 (1932)

    Google Scholar 

  26. 26.

    M. Yaneva, K. Kalinov, S. Zacharieva, Mortality in Cushing’s syndrome: data from 386 patients from a single tertiary referral center. Eur. J. Endocrinol. 169, 621–627 (2013)

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    J. Drouin, S. Bilodeau, S. Vallette, Of old and new diseases: genetics of pituitary ACTH excess (Cushing) and deficiency. Clin. Genet. 72, 175–182 (2007)

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    L. Vilar, C. Freitas Mda, M. Faria, R. Montenegro, L.A. Casulari, L. Naves, O.D. Bruno, Pitfalls in the diagnosis of Cushing’s syndrome. Arq. Bras. Endocrinol. Metabol. 51, 1207–1216 (2007)

    Article  PubMed  Google Scholar 

  29. 29.

    A.M. Robertson, A.P. Heaney, Molecular markers in pituitary tumors. Curr. Opin. Endocrinol. Diabetes Obes. 23, 324–330 (2016)

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    S.L. Asa, S. Ezzat, The pathogenesis of pituitary tumours. Nat. Rev. Cancer 2, 836–849 (2002)

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    S. Ezzat, S.L. Asa, Mechanisms of disease: The pathogenesis of pituitary tumors. Nat. Clin. Pract. Endocrinol. Metab. 2, 220–230 (2006)

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    S. Bilodeau, S. Vallette-Kasic, Y. Gauthier, D. Figarella-Branger, T. Brue, F. Berthelet, A. Lacroix, D. Batista, C. Stratakis, J. Hanson, B. Meij, J. Drouin, Role of Brg1 and HDAC2 in GR trans-repression of the pituitary POMC gene and misexpression in Cushing disease. Genes Dev. 20, 2871–2886 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    X. Liu, M. Feng, Y. Zhang, C. Dai, B. Sun, X. Bao, K. Deng, Y. Yao, R. Wang, Expression of Matrix Metalloproteinase-9, Pituitary Tumor Transforming Gene, High Mobility Group A 2, and Ki-67 in Adrenocorticotropic Hormone-Secreting Pituitary Tumors and Their Association with Tumor Recurrence. World Neurosurg. 113, e213–e221 (2018)

    Article  PubMed  Google Scholar 

  34. 34.

    A. Wierinckx, C. Auger, P. Devauchelle, A. Reynaud, P. Chevallier, M. Jan, G. Perrin, M. Fevre-Montange, C. Rey, D. Figarella-Branger, G. Raverot, M.F. Belin, J. Lachuer, J. Trouillas, A diagnostic marker set for invasion, proliferation, and aggressiveness of prolactin pituitary tumors. Endocr. Relat. Cancer 14, 887–900 (2007)

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    M. Filippella, F. Galland, M. Kujas, J. Young, A. Faggiano, G. Lombardi, A. Colao, G. Meduri, P. Chanson, Pituitary tumour transforming gene (PTTG) expression correlates with the proliferative activity and recurrence status of pituitary adenomas: a clinical and immunohistochemical study. Clin. Endocrinol. 65, 536–543 (2006)

    Article  Google Scholar 

  36. 36.

    B.W. Scheithauer, T.A. Gaffey, R.V. Lloyd, T.J. Sebo, K.T. Kovacs, E. Horvath, O. Yapicier, W.F. Young Jr., F.B. Meyer, T. Kuroki, D.L. Riehle, E.R. Laws Jr., Pathobiology of pituitary adenomas and carcinomas. Neurosurgery 59, 341–353 (2006). discussion 341-353

    Article  PubMed  Google Scholar 

  37. 37.

    M. Musat, D.G. Morris, M. Korbonits, A.B. Grossman, Cyclins and their related proteins in pituitary tumourigenesis. Mol. Cell. Endocrinol. 326, 25–29 (2010)

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    M. Fedele, A. Fusco, Role of the high mobility group A proteins in the regulation of pituitary cell cycle. J. Mol. Endocrinol. 44, 309–318 (2010)

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    S. Jordan, K. Lidhar, M. Korbonits, D.G. Lowe, A.B. Grossman, Cyclin D and cyclin E expression in normal and adenomatous pituitary. Eur. J. Endocrinol. 143, R1–R6 (2000)

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Y. Tani, N. Inoshita, T. Sugiyama, M. Kato, S. Yamada, M. Shichiri, Y. Hirata, Upregulation of CDKN2A and suppression of cyclin D1 gene expressions in ACTH-secreting pituitary adenomas. Eur. J. Endocrinol. 163, 523–529 (2010)

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    D. Reisman, E.A. Thompson, Glucocorticoid regulation of cyclin D3 gene transcription and mRNA stability in lymphoid cells. Mol. Endocrinol. 9, 1500–1509 (1995)

    CAS  PubMed  Google Scholar 

  42. 42.

    C. Attwooll, E. Lazzerini Denchi, K. Helin, The E2F family: specific functions and overlapping interests. EMBO J. 23, 4709–4716 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    P.L. Dahia, R.C. Aguiar, J. Honegger, R. Fahlbush, S. Jordan, D.G. Lowe, X. Lu, R.N. Clayton, G.M. Besser, A.B. Grossman, Mutation and expression analysis of the p27/kip1 gene in corticotrophin-secreting tumours. Oncogene 16, 69–76 (1998)

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    M. Korbonits, H.S. Chahal, G. Kaltsas, S. Jordan, Y. Urmanova, Z. Khalimova, P.E. Harris, W.E. Farrell, F.X. Claret, A.B. Grossman, Expression of phosphorylatedp27(Kip1) protein and Jun activation domain-binding protein 1 in human pituitary tumors. J. Clin. Endocrinol. Metab. 87, 2635–2643 (2002)

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    A. Roussel-Gervais, S. Bilodeau, S. Vallette, F. Berthelet, A. Lacroix, D. Figarella-Branger, T. Brue, J. Drouin, Cooperation between cyclin E andp27(Kip1) in pituitary tumorigenesis. Mol. Endocrinol. 24, 1835–1845 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    T. Zhang, B. Zhao, J. Li, C. Zhang, H. Li, J. Wu, S. Zhang, G. Hui, Pituitary gene expression differs in D-galactose-induced cell senescence and steroid-induced prolactinomas. Mol. Med. Rep. 11, 3027–3032 (2015)

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    M. Sapochnik, L.E. Nieto, M. Fuertes, E. Arzt, Molecular mechanisms underlying pituitary pathogenesis. Biochem. Genet. 54, 107–119 (2016)

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Q. Wu, J.B. Lian, J.L. Stein, G.S. Stein, J.A. Nickerson, A.N. Imbalzano, The BRG1 ATPase of human SWI/SNF chromatin remodeling enzymes as a driver of cancer. Epigenomics 9, 919–931 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Sun Ho Kim or Eun Jig Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lim, J.S., Lee, MK., Choi, E. et al. Hormonal aggressiveness according to the expression of cellular markers in corticotroph adenomas. Endocrine 64, 147–156 (2019). https://doi.org/10.1007/s12020-018-1815-x

Download citation

Keywords

  • Cushing syndrome
  • ACTH-secreting pituitary adenoma
  • Hormones
  • Biomarkers