Skip to main content

Advertisement

Log in

Determination of effective half-life of 131I in patients with differentiated thyroid carcinoma: comparison of cystatin C and creatinine-based estimation of renal function

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Renal function and effective half-life (t1/2,eff) of I-131 have not been fully elucidated in patients undergoing radioiodine therapy (RAIT) for differentiated thyroid cancer (DTC). Aim of the present analysis was to evaluate the potential of cystatin C-based estimated glomerular filtration rate (eGFRCysC) in comparison to conventional creatinine (eGFRCrea) and to verify which methods to determine t1/2,eff are most accurate to predict t1/2,eff.

Methods

Forty-eight patients receiving whole-body I-131-scintigraphy were included. eGFRCysC was compared to eGFRCrea with regard to accuracy of t1/2,eff prediction. Three different methods (i.e. blood-based, gamma camera-based and probe-based) and two protocols with either three (short period,SP; up to 42 h) or four (long period,LP; up to 114 h) time points were compared using the Akaike’s information criterion.

Results

The eGFRCysC measurement is more likely than eGFRCrea in predicting the t1/2,eff. High correlation coefficients were found between t1/2,eff assessed by gamma camera and probe measurements and blood-based determination revealed lower values. Patients with normal eGFR showed higher values of t1/2,eff of LP compared to SP.

Conclusions

eGFRCysC should be included in further study protocols. As camera and probe measurements lead to almost superimposable results, one of the methods is expendable. Blood-based results of t1/2,eff were lower, presumably due to unspecific iodine retention, whereas the lower correlation with renal function may be caused by individual differences in intestinal iodine resorption. SP-protocols up to 42 h after I-131 administration are sufficient to determine t1/2,eff. Further studies are necessary for specific recommendations regarding I-131 activity reduction during RAIT in patients with DTC and renal insufficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Dietlein, W. Eschner, F. Grunwald, M. Lassmann, F. Verburg, M. Luster, Procedure guidelines for radioiodine therapy of differentiated thyroid cancer. Nuklearmedizin 55, 77–89 (2016). Version 4

    Article  PubMed  Google Scholar 

  2. M. Luster, S.E. Clarke, M. Dietlein, M. Lassmann, P. Lind, W. Oyen, J. Tennvall, E. Bombardieri, Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur. J. Nucl. Med. Mol. Imaging 35, 1941–1959 (2008)

    Article  CAS  PubMed  Google Scholar 

  3. B.R. Haugen, E.K. Alexander, K.C. Bible, G.M. Doherty, S.J. Mandel, Y.E. Nikiforov, F. Pacini, G.W. Randolph, A.M. Sawka, M. Schlumberger, K.G. Schuff, S.I. Sherman, J.A. Sosa, D.L. Steward, R.M. Tuttle, L. Wartofsky, 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 26, 1–133 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  4. R.R. Cavalieri, Iodine metabolism and thyroid physiology: current concepts. Thyroid 7, 177–181 (1997)

    Article  CAS  PubMed  Google Scholar 

  5. C. Alevizaki, M. Molfetas, A. Samartzis, B. Vlassopoulou, C. Vassilopulos, P. Rondogianni, S. Kottou, V. Hadjiconstantinou, M. Alevizaki, Iodine 131 treatment for differentiated thyroid carcinoma in patients with end stage renal failure: dosimetric, radiation safety, and practical considerations. Hormones 5, 276–287 (2006)

    Article  PubMed  Google Scholar 

  6. M. Lassmann, H. Hanscheid, C. Chiesa, C. Hindorf, C. Flux, M. Luster, EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur. J. Nucl. Med. Mol. Imaging 35, 1405–1412 (2008)

    Article  PubMed  Google Scholar 

  7. K. Vogel, T. Opfermann, S. Wiegand, J. Biemann, M. Busch, T. Winkens, M. Freesmeyer, Relationship between estimated glomerular filtration rate and biological half-life of 131I. Retrospective analysis in patients with differentiated thyroid carcinoma. Nuklearmedizin 52, 164–169 (2013)

    Article  CAS  PubMed  Google Scholar 

  8. A.S. Levey, L.A. Stevens, C.H. Schmid, Y.P. Zhang, A.F. Castro, H.I. Feldman, J.W. Kusek, P. Eggers, F. van Lente, T. Greene, J. Coresh, A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 150, 604–612 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  9. L.A. Inker, C.H. Schmid, H. Tighiouart, J.H. Eckfeldt, H.I. Feldman, T. Greene, J.W. Kusek, J. Manzi, F. van Lente, Y.P. Zhang, J. Coresh, A.S. Levey, Estimating glomerular filtration rate from serum creatinine and cystatin C. N. Engl. J. Med. 367, 20–29 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. A.S. Levey, J. Coresh, E. Balk, A.T. Kausz, A. Levin, M.W. Steffes, R.J. Hogg, R.D. Perrone, J. Lau, G. Eknoyan, National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann. Intern. Med. 139, 137–147 (2003)

    Article  PubMed  Google Scholar 

  11. R. Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  12. S.F. Barrington, A.G. Kettle, M.J. O’Doherty, C.P. Wells, E.J.R. Somer, A.J. Coakley, Radiation dose rates from patients receiving iodine-131 therapy for carcinoma of the thyroid. Eur. J. Nucl. Med. 23, 123–130 (1996)

    Article  CAS  PubMed  Google Scholar 

  13. T. Smith, C.J. Edmonds, A slow component of iodine turnover in athyreotic individuals. Clin. Sci. Mol. Med. 53, 81–86 (1977)

    CAS  PubMed  Google Scholar 

  14. Y. Sakamoto, M. Ishiguro, G. Kitagawa, Akaike information criterion statistics. Tokyo (u.a.): KTK Scient. Publ.; 1986

  15. K.P. Burnham, D.R. Anderson, K.P. Huyvaert, AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011)

    Article  Google Scholar 

  16. H. Hanscheid, M. Lassmann, M. Luster, S.R. Thomas, F. Pacini, C. Ceccarelli, P.W. Ladenson, R.L. Wahl, M. Schlumberger, M. Ricard, A. Driedger, R.T. Kloos, S.I. Sherman, B.R. Haugen, V. Carriere, C. Corone, C. Reiners, Iodine biokinetics and dosimetry in radioiodine therapy of thyroid cancer: procedures and results of a prospective international controlled study of ablation after rhTSH or hormone withdrawal. J. Nucl. Med. 47, 648–654 (2006)

    PubMed  Google Scholar 

  17. H. Remy, I. Borget, S. Leboulleux, N. Guilabert, F. Lavielle, J. Garsi, C. Bournaud, S. Gupta, M. Schlumberger, M. Ricard, 131I effective half-life and dosimetry in thyroid cancer patients. J. Nucl. Med. 49, 1445–1450 (2008)

    Article  CAS  PubMed  Google Scholar 

  18. C. Menzel, W.T. Kranert, N. Dobert, M. Diehl, T. Fietz, N. Hamscho, U. Berner, F. Grunwald, rhTSH stimulation before radioiodine therapy in thyroid cancer reduces the effective half-life of (131)I. J. Nucl. Med. 44, 1065–1068 (2003)

    CAS  PubMed  Google Scholar 

  19. M. Luster, S.I. Sherman, M.C. Skarulis, J.R. Reynolds, M. Lassmann, H. Hanscheid, C. Reiners, Comparison of radioiodine biokinetics following the administration of recombinant human thyroid stimulating hormone and after thyroid hormone withdrawal in thyroid carcinoma. Eur. J. Nucl. Med. Mol. Imaging 30, 1371–1377 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. F. Pacini, P.W. Ladenson, M. Schlumberger, A. Drieder, M. Luster, R.T. Kloos, S. Sherman, B. Haugen, C. Corone, E. Molinaro, R. Elisei, C. Ceccarelli, A. Pinchera, R.L. Wahl, S. Leoulleux, M. Ricard, J. Yoo, N.L. Busaidy, E. Delpassand, H. Hanscheid, R. Felbinger, M. Lassmann, Cl Reiners, Radioiodine ablation of thyroid remnants after preparation with recombinant human thyrotropin in differentiated thyroid carcinoma: results of an international, randomized, controlled study. J. Clin. Endocrinol. Metab. 91, 926–932 (2006)

    Article  CAS  PubMed  Google Scholar 

  21. F. Duranton, A. Lacoste, P. Faurous, E. Deshayes, J. Ribstein, A. Avignon, G. Mourad, A. Argiles, Exogenous thyrotropin improves renal function in euthyroid patients, while serum creatinine levels are increased in hypothyroidism. Clin. Kidney J. 6, 478–483 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. G.B. Coura-Filho, J. Willegaignon, C.A. Buchpiguel, M.T. Sapienza, Effects of thyroid hormone withdrawal and recombinant human thyrotropin on glomerular filtration rate during radioiodine therapy for well-differentiated thyroid cancer. Thyroid 25, 1291–1296 (2015)

    Article  CAS  PubMed  Google Scholar 

  23. S.J. Lee, H.Y. Lee, W.W. Lee, S.E. Kim, The effect of recombinant human thyroid stimulating hormone on sustaining liver and renal function in thyroid cancer patients during radioactive iodine therapy. Nucl. Med. Commun. 35, 727–732 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. D. Taieb, F. Sebag, B. Farman-Ara, T. Portal, K. Baumstarck-Barrau, C. Fortanier, M. Bourrelly, J. Mancini, C. De Micco, P. Auquier, B. Conte-Devolx, J.F. Henry, O. Mundler, Iodine biokinetics and radioiodine exposure after recombinant human thyrotropin-assisted remnant ablation in comparison with thyroid hormone withdrawal. J. Clin. Endocrinol. Metab. 95, 3283–3290 (2010)

    Article  CAS  PubMed  Google Scholar 

  25. J. Halstenberg, W.T. Kranert, H. Korkusuz, A. Mayer, H. Ackermann, F. Grunwald, C. Happel, Influence of glucocorticoid therapy on intratherapeutic biodistribution of 131I radioiodine therapy in Graves’ disease. Nuklearmedizin 57, 43–49 (2018)

    Article  PubMed  Google Scholar 

  26. J. Willegaignon, R.A. Pelissoni, B.C. Lima, M.T. Sapienza, G.B. Coura, C.A. Buchpiguel, Prediction of iodine-131 biokinetics and radiation doses from therapy on the basis of tracer studies: an important question for therapy planning in nuclear medicine. Nucl. Med. Commun. 37, 473–479 (2016)

    Article  CAS  PubMed  Google Scholar 

  27. R. Hojs, S. Bevc, R. Ekart, M. Gorenjak, L. Puklavec, Serum cystatin C-based equation compared to serum creatinine-based equations for estimation of glomerular filtration rate in patients with chronic kidney disease. Clin. Nephrol. 70, 10–17 (2008)

    Article  CAS  PubMed  Google Scholar 

  28. M.T. Keddis, H. Amer, N. Voskoboev, W.K. Kremers, A.D. Rule, J.C. Lieske, Creatinine-Based, G.F.R. Cystatin C-Based, Estimating equations and their non-GFR determinants in kidney transplant recipients. Clin. J. Am. Soc. Nephrol. 11, 1640–1649 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. L.A. Stevens, C.H. Schmid, T. Greene, L. Li, G.J. Beck, M.M. Joffe, M. Froissart, J.W. Kusek, Y.P. Zhang, J. Coresh, A.S. Levey, Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int. 75, 652–660 (2009)

    Article  CAS  PubMed  Google Scholar 

  30. D.S. Riggs, Quantitative aspects of iodine metabolism in man. Pharmacol. Rev. 4, 284–370 (1952)

    CAS  PubMed  Google Scholar 

  31. R.D. Perrone, N.E. Madias, A.S. Levey, Serum creatinine as an index of renal function: new insights into old concepts. Clin. Chem. 38, 1933–1953 (1992)

    CAS  PubMed  Google Scholar 

  32. E. Randers, E.J. Erlandsen, Serum cystatin C as an endogenous marker of the renal function--a review. Clin. Chem. Lab. Med. 37, 389–395 (1999)

    Article  CAS  PubMed  Google Scholar 

  33. O.P. Soldin, Controversies in urinary iodine determinations. Clin. Biochem. 35, 575–579 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. D.C. Brater, Measurement of renal function during drug development. Br. J. Clin. Pharmacol. 54, 87–95 (2002)

    Article  PubMed  Google Scholar 

  35. H.S. Lee, H. Rhee, E.Y. Seong, D.W. Lee, S.B. Lee, I.S. Kwak, Comparison of glomerular filtration rates calculated by different serum cystatin C-based equations in patients with chronic kidney disease. Kidney Res. Clin. Pract. 33, 45–51 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  36. A.S. Levey, J. Coresh, T. Greene, L.A. Stevens, Y.L. Zhang, S. Hendriksen, J.W. Kusek, F. Van Lente, Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. Intern. Med. 145, 247–254 (2006)

    Article  CAS  PubMed  Google Scholar 

  37. D.W. Cockcroft, M.H. Gault, Prediction of creatinine clearance from serum creatinine. Nephron 16, 31–41 (1976)

    Article  CAS  PubMed  Google Scholar 

  38. J. Willegaignon, R.A. Pelissoni, B.C. Lima, M.T. Sapienza, G.B. Coura-Filho, M.A. Queiroz, C.A. Buchpiguel, Estimating (131)I biokinetics and radiation doses to the red marrow and whole body in thyroid cancer patients: probe detection versus image quantification. Radiol. Bras. 49, 150–157 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  39. L. Johansson, S. Leide-Svegborn, S. Mattsson, B. Nosslin, Biokinetics of iodide in man: refinement of current ICRP dosimetry models. Cancer Biother. Radiopharm. 18, 445–450 (2003)

    Article  CAS  PubMed  Google Scholar 

  40. G.H. Kramer, B.M. Hauck, M.J. Chamberlain, Biological half-life of iodine in adults with intact thyroid function and in athyreotic persons. Radiat. Prot. Dosim. 102, 129–135 (2002)

    Article  CAS  Google Scholar 

  41. N.R. Hill, S.T. Fatoba, J.L. Oke, J.A. Hirst, C.A. O’Callaghan, D.S. Lasserson, F.D.R. Hobbs, Global prevalence of chronic kidney disease – a systematic review and meta-analysis. PLoS ONE 11, e0158765 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Dr. Ernesta Palombo-Kinne is gratefully acknowledged for language assistance with this manuscript. Dominik Driesch is gratefully acknowledged for statistical analyses.

Funding

This study was funded by the intramural grants of the Jena University Hospital only.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Freesmeyer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freesmeyer, M., Gühne, F., Kühnel, C. et al. Determination of effective half-life of 131I in patients with differentiated thyroid carcinoma: comparison of cystatin C and creatinine-based estimation of renal function. Endocrine 63, 554–562 (2019). https://doi.org/10.1007/s12020-018-1800-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-018-1800-4

Keywords

Navigation