Skip to main content
Log in

Exosomal microRNA-29a mediates cardiac dysfunction and mitochondrial inactivity in obesity-related cardiomyopathy

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Present study aims to explore the pathophysiological role of microRNA (miR)-29a in the process of obesity-related cardiomyopathy in human subjects and mice.

Methods

The expression level of circulating exosomal miR-29a was measured in 37 lean and 30 obese human subjects, and correlated with cardiac parameters. The effects of miR-29a on mitochondrial activity and cardiac function were investigated by treatment of miR-29a sponge in primary mouse cardiomyocytes and diet-induced obesity-related cardiomyopathy in mice.

Results

The increased circulating miR-29a level was closely associated with impaired human cardiac function, including ejection fraction (r = −0.2663, p < 0.05) and NT-proBNP levels (r = 0.4270, p < 0.001). Exosomes from obese human plasma mediated cardiomyocyte mitochondrial inactivity, but pre-treatment with miR-29a sponge attenuated the exosomal miR-29a-induced reduction of ATP production (p < 0.001), basal oxygen consumption (p < 0.01) and mitochondrial complex I activity (p < 0.01). In vivo mouse study, high fat diet damaged cardiac function, normal structure, and mitochondrial activity, whereas miR-29a sponge improved the cardiac status.

Conclusions

Present study uncovered the correlation between circulating miR-29a and cardiac parameters in human subjects, and provided solid evidence of the therapeutic application of miR-29a sponge in combating obesity-mediated cardiac dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H.B. Hubert, M. Feinleib, P.M. McNamara, W.P. Castelli, Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation 67(5), 968–977 (1983)

    Article  CAS  PubMed  Google Scholar 

  2. L.F. Van Gaal, I.L. Mertens, C.E. De Block, Mechanisms linking obesity with cardiovascular disease. Nature 444(7121), 875–880 (2006). https://doi.org/10.1038/nature05487

    Article  CAS  PubMed  Google Scholar 

  3. T.B. Horwich, G.C. Fonarow, M.A. Hamilton, W.R. MacLellan, M.A. Woo, J.H. Tillisch, The relationship between obesity and mortality in patients with heart failure. J. Am. Coll. Cardiol. 38(3), 789–795 (2001)

    Article  CAS  PubMed  Google Scholar 

  4. G. O’Brien, Obesity and the risk of heart failure. N. Eng. J. Med. 347(23), 1887–1889 (2002). https://doi.org/10.1056/NEJM200212053472314

  5. A.B. Gustafsson, R.A. Gottlieb, Heart mitochondria: gates of life and death. Cardiovasc. Res. 77(2), 334–343 (2008). https://doi.org/10.1093/cvr/cvm005

    Article  CAS  PubMed  Google Scholar 

  6. M. Frisard, E. Ravussin, Energy metabolism and oxidative stress: impact on the metabolic syndrome and the aging process. Endocrine 29(1), 27–32 (2006). https://doi.org/10.1385/ENDO:29:1:27

    Article  CAS  PubMed  Google Scholar 

  7. J. Marin-Garcia, M.J. Goldenthal, G.W. Moe, Abnormal cardiac and skeletal muscle mitochondrial function in pacing-induced cardiac failure. Cardiovasc. Res. 52(1), 103–110 (2001)

    Article  CAS  PubMed  Google Scholar 

  8. J. Hirst, Mitochondrial complex I. Annu. Rev. Biochem. 82, 551–575 (2013). https://doi.org/10.1146/annurev-biochem-070511-103700

    Article  CAS  PubMed  Google Scholar 

  9. J.G. Duncan, B.N. Finck, The PPARalpha-PGC-1alpha axis controls cardiac energy metabolism in healthy and diseased myocardium. Ppar. Res. 2008, 253817 (2008). https://doi.org/10.1155/2008/253817

    Article  CAS  PubMed  Google Scholar 

  10. K. Drosatos, P.C. Schulze, Cardiac lipotoxicity: molecular pathways and therapeutic implications. Curr. Heart Fail. Rep. 10(2), 109–121 (2013). https://doi.org/10.1007/s11897-013-0133-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. I. Cundrle, P. Suk, V. Sramek, Z. Lacinova, M. Haluzik, Circadian leptin concentration changes in critically ill heart failure patients-preliminary results. Physiol. Res. 67(3), 505–508 (2018)

    Article  CAS  PubMed  Google Scholar 

  12. M.C. Borges, D.A. Lawlor, C. de Oliveira, J. White, B.L. Horta, A.J. Barros, Role of adiponectin in coronary heart disease risk: a mendelian randomization study. Circ. Res. 119(3), 491–499 (2016). https://doi.org/10.1161/CIRCRESAHA.116.308716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. K.M. Choi, J.S. Lee, E.J. Kim, S.H. Baik, H.S. Seo, D.S. Choi, D.J. Oh, C.G. Park, Implication of lipocalin-2 and visfatin levels in patients with coronary heart disease. Eur. J. Endocrinol. 158(2), 203–207 (2008). https://doi.org/10.1530/EJE-07-0633

    Article  CAS  PubMed  Google Scholar 

  14. R. Shibata, N. Ouchi, M. Ito, S. Kihara, I. Shiojima, D.R. Pimentel, M. Kumada, K. Sato, S. Schiekofer, K. Ohashi, T. Funahashi, W.S. Colucci, K. Walsh, Adiponectin-mediated modulation of hypertrophic signals in the heart. Nat. Med. 10(12), 1384–1389 (2004). https://doi.org/10.1038/nm1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. N.C. Lau, L.P. Lim, E.G. Weinstein, D.P. Bartel, An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543), 858–862 (2001). https://doi.org/10.1126/science.1065062

    Article  CAS  PubMed  Google Scholar 

  16. R.A. Boon, K. Iekushi, S. Lechner, T. Seeger, A. Fischer, S. Heydt, D. Kaluza, K. Treguer, G. Carmona, A. Bonauer, A.J. Horrevoets, N. Didier, Z. Girmatsion, P. Biliczki, J.R. Ehrlich, H.A. Katus, O.J. Muller, M. Potente, A.M. Zeiher, H. Hermeking, S. Dimmeler, MicroRNA-34a regulates cardiac ageing and function. Nature 495(7439), 107–110 (2013). https://doi.org/10.1038/nature11919

    Article  CAS  PubMed  Google Scholar 

  17. M. Kelly, R.D. Bagnall, R.E. Peverill, L. Donelan, L. Corben, M.B. Delatycki, C. Semsarian, A polymorphic miR-155 binding site in AGTR1 is associated with cardiac hypertrophy in Friedreich ataxia. J. Mol. Cell. Cardiol. 51(5), 848–854 (2011). https://doi.org/10.1016/j.yjmcc.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  18. F. Wang, S.J. Zhang, X. Yao, D.M. Tian, K.Q. Zhang, D.M. She, F.F. Guo, Q.W. Zhai, H. Ying, Y. Xue, Circulating microRNA-1a is a biomarker of Graves’ disease patients with atrial fibrillation. Endocrine 57(1), 125–137 (2017). https://doi.org/10.1007/s12020-017-1331-4

    Article  CAS  PubMed  Google Scholar 

  19. R. Roncarati, C. Viviani Anselmi, M.A. Losi, L. Papa, E. Cavarretta, P. Da Costa Martins, C. Contaldi, G. Saccani Jotti, A. Franzone, L. Galastri, M.V. Latronico, M. Imbriaco, G. Esposito, L. De Windt, S. Betocchi, G. Condorelli, Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 63(9), 920–927 (2014). https://doi.org/10.1016/j.jacc.2013.09.041

    Article  CAS  PubMed  Google Scholar 

  20. Y. Ye, Z. Hu, Y. Lin, C. Zhang, J.R. Perez-Polo, Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury. Cardiovasc. Res. 87(3), 535–544 (2010). https://doi.org/10.1093/cvr/cvq053

    Article  CAS  PubMed  Google Scholar 

  21. A.A. Derda, S. Thum, J.M. Lorenzen, U. Bavendiek, J. Heineke, B. Keyser, M. Stuhrmann, R.C. Givens, P.J. Kennel, P.C. Schulze, J.D. Widder, J. Bauersachs, T. Thum, Blood-based microRNA signatures differentiate various forms of cardiac hypertrophy. Int. J. Cardiol. 196, 115–122 (2015). https://doi.org/10.1016/j.ijcard.2015.05.185

    Article  PubMed  PubMed Central  Google Scholar 

  22. L. Fang, A.H. Ellims, X.L. Moore, D.A. White, A.J. Taylor, J. Chin-Dusting, A.M. Dart, Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy. J. Transl. Med. 13, 314 (2015). https://doi.org/10.1186/s12967-015-0672-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. L. Wang, X. Niu, J. Hu, H. Xing, M. Sun, J. Wang, Q. Jian, H. Yang, After myocardial ischemia-reperfusion, miR-29a, and Let7 could affect apoptosis through regulating IGF-1. Biomed. Res. Int. 2015, 245412 (2015). https://doi.org/10.1155/2015/245412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Y. Zhang, X.R. Huang, L.H. Wei, A.C. Chung, C.M. Yu, H.Y. Lan, miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-beta/Smad3 signaling. Mol. Ther. 22(5), 974–985 (2014). https://doi.org/10.1038/mt.2014.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. X. Cao, J. Wang, Z. Wang, J. Du, X. Yuan, W. Huang, J. Meng, H. Gu, Y. Nie, B. Ji, S. Hu, Z. Zheng, MicroRNA profiling during rat ventricular maturation: a role for miR-29a in regulating cardiomyocyte cell cycle re-entry. FEBS Lett. 587(10), 1548–1555 (2013). https://doi.org/10.1016/j.febslet.2013.01.075

    Article  CAS  PubMed  Google Scholar 

  26. W.M. Yang, H.J. Jeong, S.Y. Park, W. Lee, Induction of miR-29a by saturated fatty acids impairs insulin signaling and glucose uptake through translational repression of IRS-1 in myocytes. FEBS Lett. 588(13), 2170–2176 (2014). https://doi.org/10.1016/j.febslet.2014.05.011

    Article  CAS  PubMed  Google Scholar 

  27. J. Dooley, J.E. Garcia-Perez, J. Sreenivasan, S.M. Schlenner, R. Vangoitsenhoven, A.S. Papadopoulou, L. Tian, S. Schonefeldt, L. Serneels, C. Deroose, K.A. Staats, B. Van der Schueren, B. De Strooper, O.P. Mc Guinness, C. Mathieu, A. Liston, The microRNA-29 family dictates the balance between homeostatic and pathological glucose handling in diabetes and obesity. Diabetes 65(1), 53–61 (2016). https://doi.org/10.2337/db15-0770

    Article  CAS  PubMed  Google Scholar 

  28. Y. Pan, Y. Wang, Y. Zhao, K. Peng, W. Li, Y. Wang, J. Zhang, S. Zhou, Q. Liu, X. Li, L. Cai, G. Liang, Inhibition of JNK phosphorylation by a novel curcumin analog prevents high glucose-induced inflammation and apoptosis in cardiomyocytes and the development of diabetic cardiomyopathy. Diabetes 63(10), 3497–3511 (2014). https://doi.org/10.2337/db13-1577

    Article  CAS  PubMed  Google Scholar 

  29. H. Nie, C. Song, D. Wang, S. Cui, T. Ren, Z. Cao, Q. Liu, Z. Chen, X. Chen, Y. Zhou, MicroRNA-194 inhibition improves dietary-induced non-alcoholic fatty liver disease in mice through targeting on FXR. Biochim. Biophys. Acta 1863(12), 3087–3094 (2017). https://doi.org/10.1016/j.bbadis.2017.09.020

    Article  CAS  Google Scholar 

  30. P.J. Hunt, A.M. Richards, M.G. Nicholls, T.G. Yandle, R.N. Doughty, E.A. Espiner, Immunoreactive amino-terminal pro-brain natriuretic peptide (NT-PROBNP): a new marker of cardiac impairment. Clin. Endocrinol. 47(3), 287–296 (1997)

    Article  CAS  Google Scholar 

  31. H. Valadi, K. Ekstrom, A. Bossios, M. Sjostrand, J.J. Lee, J.O. Lotvall, Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9(6), 654–659 (2007). https://doi.org/10.1038/ncb1596

    Article  CAS  PubMed  Google Scholar 

  32. M. Whitham, B.L. Parker, M. Friedrichsen, J.R. Hingst, M. Hjorth, W.E. Hughes, C.L. Egan, L. Cron, K.I. Watt, R.P. Kuchel, N. Jayasooriah, E. Estevez, T. Petzold, C.M. Suter, P. Gregorevic, B. Kiens, E.A. Richter, D.E. James, J.F.P. Wojtaszewski, M.A. Febbraio, Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell. Metab. 27(1), 237–251 e234 (2018). https://doi.org/10.1016/j.cmet.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  33. K.M. Davies, M. Strauss, B. Daum, J.H. Kief, H.D. Osiewacz, A. Rycovska, V. Zickermann, W. Kuhlbrandt, Macromolecular organization of ATP synthase and complex I in whole mitochondria. Proc. Natl. Acad. Sci. USA 108(34), 14121–14126 (2011). https://doi.org/10.1073/pnas.1103621108

    Article  PubMed  PubMed Central  Google Scholar 

  34. F.C. Yin, H.A. Spurgeon, K. Rakusan, M.L. Weisfeldt, E.G. Lakatta, Use of tibial length to quantify cardiac hypertrophy: application in the aging rat. Am. J. Physiol. 243(6), H941–H947 (1982). https://doi.org/10.1152/ajpheart.1982.243.6.H941

    Article  CAS  PubMed  Google Scholar 

  35. F.S. Loffredo, M.L. Steinhauser, S.M. Jay, J. Gannon, J.R. Pancoast, P. Yalamanchi, M. Sinha, C. Dall’Osso, D. Khong, J.L. Shadrach, C.M. Miller, B.S. Singer, A. Stewart, N. Psychogios, R.E. Gerszten, A.J. Hartigan, M.J. Kim, T. Serwold, A.J. Wagers, R.T. Lee, Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153(4), 828–839 (2013). https://doi.org/10.1016/j.cell.2013.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. S. De Rosa, B. Arcidiacono, E. Chiefari, A. Brunetti, C. Indolfi, D.P. Foti, Type 2 diabetes mellitus and cardiovascular disease: genetic and epigenetic links. Front. Endocrinol. 9, 2 (2018). https://doi.org/10.3389/fendo.2018.00002

    Article  Google Scholar 

  37. C.L. Kurtz, B.C. Peck, E.E. Fannin, C. Beysen, J. Miao, S.R. Landstreet, S. Ding, V. Turaga, P.K. Lund, S. Turner, S.B. Biddinger, K.C. Vickers, P. Sethupathy, MicroRNA-29 fine-tunes the expression of key FOXA2-activated lipid metabolism genes and is dysregulated in animal models of insulin resistance and diabetes. Diabetes 63(9), 3141–3148 (2014). https://doi.org/10.2337/db13-1015

    Article  PubMed  PubMed Central  Google Scholar 

  38. Z. Yang, L. Wu, X. Zhu, J. Xu, R. Jin, G. Li, F. Wu, MiR-29a modulates the angiogenic properties of human endothelial cells. Biochem. Biophys. Res. Commun. 434(1), 143–149 (2013). https://doi.org/10.1016/j.bbrc.2013.03.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Q. Lin, Z. Yun, The hypoxia-inducible factor pathway in adipocytes: the role of HIF-2 in adipose inflammation and hypertrophic cardiomyopathy. Front. Endocrinol. 6, 39 (2015). https://doi.org/10.3389/fendo.2015.00039

    Article  Google Scholar 

  40. V.J. Dzau, Autocrine and paracrine mechanisms in the pathophysiology of heart failure. Am. J. Cardiol. 70(10), 4C–11C (1992)

    Article  CAS  PubMed  Google Scholar 

  41. J.F. Keaney Jr., M.G. Larson, R.S. Vasan, P.W. Wilson, I. Lipinska, D. Corey, J.M. Massaro, P. Sutherland, J.A. Vita, E.J. Benjamin, S. Framingham, Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler. Thromb. Vasc. Biol. 23(3), 434–439 (2003). https://doi.org/10.1161/01.ATV.0000058402.34138.11

    Article  CAS  PubMed  Google Scholar 

  42. K. Denzer, M.J. Kleijmeer, H.F. Heijnen, W. Stoorvogel, H.J. Geuze, Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J. Cell. Sci. 113(Pt 19), 3365–3374 (2000)

    CAS  PubMed  Google Scholar 

  43. X. Wang, H. Gu, W. Huang, J. Peng, Y. Li, L. Yang, D. Qin, K. Essandoh, Y. Wang, T. Peng, G.C. Fan, Hsp20-mediated activation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice. Diabetes 65(10), 3111–3128 (2016). https://doi.org/10.2337/db15-1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. E.E. Creemers, A.J. Tijsen, Y.M. Pinto, Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ. Res. 110(3), 483–495 (2012). https://doi.org/10.1161/CIRCRESAHA.111.247452

    Article  CAS  PubMed  Google Scholar 

  45. M.J. Rahman, D. Regn, R. Bashratyan, Y.D. Dai, Exosomes released by islet-derived mesenchymal stem cells trigger autoimmune responses in NOD mice. Diabetes 63(3), 1008–1020 (2014). https://doi.org/10.2337/db13-0859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. G. Zhang, Q. Wang, R. Xu, Therapeutics based on microRNA: a new approach for liver cancer. Curr. Genom. 11(5), 311–325 (2010). https://doi.org/10.2174/138920210791616671

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the match funding for the Key Laboratory of Myocardial Ischemia, Chinese Ministry Education (KL201316), The Heilongjiang Postdoctoral Fund (LBH-Z16133), and Chinese Postdoctoral Science Foundation (2017M611395).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youbin Liu or Honggang Nie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Procedures involving the clinical trial and animal experiments were approved by Human Ethics Committee and Animal Policy and Welfare of Harbin Medical University Committee.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

These authors contributed equally: Fengqin Li, Kuikui Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Zhang, K., Xu, T. et al. Exosomal microRNA-29a mediates cardiac dysfunction and mitochondrial inactivity in obesity-related cardiomyopathy. Endocrine 63, 480–488 (2019). https://doi.org/10.1007/s12020-018-1753-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-018-1753-7

Keywords

Navigation