Skip to main content
Log in

Adrenocortical incidentalomas and bone: from molecular insights to clinical perspectives

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

A Correction to this article was published on 10 September 2018

This article has been updated

Abstract

Adrenal incidentalomas constitute a common clinical problem with an overall prevalence of around 2–3%, but are more common with advancing age being present in 10% of those aged 70 years. The majority of these lesions are benign adrenocortical adenomas (80%), characterized in 10–40% of the cases by autonomous cortisol hypersecretion, and in 1–10% by aldosterone hypersecretion. Several observational studies have shown that autonomous cortisol and aldosterone hypersecretion are more prevalent than expected in patients with osteopenia and osteoporosis: these patients have accelerated bone loss and an increased incidence of vertebral fractures. In contrast to glucocorticoid action, the effects of aldosterone on bone are less well understood. Recent data, demonstrating a concomitant co-secretion of glucocorticoid metabolites in patients with primary aldosteronism, could explain some of the metabolic abnormalities seen in patients with aldosterone hypersecretion. In clinical practice, patients with unexplained osteoporosis, particularly when associated with other features such as impaired glucose tolerance or hypertension, should be investigated for the possible presence of autonomous cortisol or aldosterone secretion due to an adrenal adenoma. Randomized intervention studies are needed, however, to investigate the optimum interventions for osteoporosis and other co-morbidities in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 10 September 2018

    The original version of this article unfortunately contained a mistake in Figure 1. There is a typo in the word “osteoclastogenesis” and the word “activity” is missing in the same entity. It should be “osteoclastogenesis” instead of “osteoclestogenesis”.

References

  1. M. Fassnacht, W. Arlt, I. Bancos, H. Dralle, J. Newell-Price, A. Sahdev, A. Tabarin, M. Terzolo, S. Tsagarakis, O.M. Dekkers, Management of adrenal incidentalomas: European Society of Endocrinology Clinical Practice Guideline in collaboration with the European Network for the Study of Adrenal Tumors. Eur. J. Endocrinol. 175(2), G1–G34 (2016). https://doi.org/10.1530/EJE-16-0467

    Article  CAS  PubMed  Google Scholar 

  2. S.A. Paschou, A. Vryonidou, D.G. Goulis, Adrenal incidentalomas: a guide to assessment, treatment and follow-up. Maturitas 92, 79–85 (2016). https://doi.org/10.1016/j.maturitas.2016.07.017

    Article  PubMed  Google Scholar 

  3. L. Barzon, N. Sonino, F. Fallo, G. Palu, M. Boscaro, Prevalence and natural history of adrenal incidentalomas. Eur. J. Endocrinol. 149(4), 273–285 (2003)

    Article  CAS  PubMed  Google Scholar 

  4. S. Bovio, A. Cataldi, G. Reimondo, P. Sperone, S. Novello, A. Berruti, P. Borasio, C. Fava, L. Dogliotti, G.V. Scagliotti, A. Angeli, M. Terzolo, Prevalence of adrenal incidentaloma in a contemporary computerized tomography series. J. Endocrinol. Invest. 29(4), 298–302 (2006). https://doi.org/10.1007/BF03344099

    Article  CAS  PubMed  Google Scholar 

  5. V. Nuzzo, T. Attardo, G. Augello, D. Brancato, S. Camerlingo, C. Canale, F. Coretti, A. Franco, F. Giacometti, M. Gambacorta, M. Loreno, A. Maffettone, V. Provenzano, A. Zuccoli, A clinical Audit: diagnostic and epidemiological evaluation of the adrenal incidentaloma (AI). Minerva Endocrinol. (2018). https://doi.org/10.23736/S0391-1977.18.02780-3

  6. J. Crona, F. Beuschlein, K. Pacak, B. Skogseid, Advances in adrenal tumors 2018. Endocr. Relat. Cancer 25(7), R405–R420 (2018). https://doi.org/10.1530/ERC-18-0138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. F. Mantero, M. Terzolo, G. Arnaldi, G. Osella, A.M. Masini, A. Ali, M. Giovagnetti, G. Opocher, A. Angeli, A survey on adrenal incidentaloma in Italy. Study Group on Adrenal Tumors of the Italian Society of Endocrinology. J. Clin. Endocrinol. Metab. 85(2), 637–644 (2000). https://doi.org/10.1210/jcem.85.2.6372

    Article  CAS  PubMed  Google Scholar 

  8. E. Vassilatou, A. Vryonidou, S. Michalopoulou, J. Manolis, J. Caratzas, C. Phenekos, I. Tzavara, Hormonal activity of adrenal incidentalomas: results from a long-term follow-up study. Clin. Endocrinol. (Oxf.). 70(5), 674–679 (2009). https://doi.org/10.1111/j.1365-2265.2008.03492.x

    Article  CAS  PubMed  Google Scholar 

  9. M. Terzolo, S. Bovio, G. Reimondo, A. Pia, G. Osella, G. Borretta, A. Angeli, Subclinical Cushing’s syndrome in adrenal incidentalomas. Endocrinol. Metab. Clin. North. Am. 34(2), 423–439 (2005). https://doi.org/10.1016/j.ecl.2005.01.008.

    Article  PubMed  Google Scholar 

  10. G. Zavatta, G. Di Dalmazi, Recent Advances on subclinical hypercortisolism. Endocrinol. Metab. Clin. North Am. 47(2), 375–383 (2018). https://doi.org/10.1016/j.ecl.2018.01.003

    Article  PubMed  Google Scholar 

  11. S.H. Ahn, J.H. Kim, S.H. Baek, H. Kim, Y.Y. Cho, S. Suh, B.J. Kim, S. Hong, J.M. Koh, S.H. Lee, K.H. Song, Characteristics of adrenal incidentalomas in a large, prospective computed tomography-based multicenter study: The COAR Study in Korea. Yonsei Med. J. 59(4), 501–510 (2018). https://doi.org/10.3349/ymj.2018.59.4.501

    Article  PubMed  PubMed Central  Google Scholar 

  12. J.W. Funder, R.M. Carey, F. Mantero, M.H. Murad, M. Reincke, H. Shibata, M. Stowasser, W.F. Young Jr, The management of primary aldosteronism: case detection, diagnosis, and treatment: an Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 101(5), 1889–1916 (2016). https://doi.org/10.1210/jc.2015-4061

    Article  CAS  PubMed  Google Scholar 

  13. V. Tsiavos, A. Markou, L. Papanastasiou, T. Kounadi, I.I. Androulakis, N. Voulgaris, A. Zachaki, E. Kassi, G. Kaltsas, G.P. Chrousos, G.P. Piaditis, A new highly sensitive and specific overnight combined screening and diagnostic test for primary aldosteronism. Eur. J. Endocrinol. 175(1), 21–28 (2016). https://doi.org/10.1530/EJE-16-0003

    Article  CAS  PubMed  Google Scholar 

  14. W. Arlt, K. Lang, A.J. Sitch, A.S. Dietz, Y. Rhayem, I. Bancos, A. Feuchtinger, V. Chortis, L.C. Gilligan, P. Ludwig, A. Riester, E. Asbach, B.A. Hughes, D.M. O’Neil, M. Bidlingmaier, J.W. Tomlinson, Z.K. Hassan-Smith, D.A. Rees, C. Adolf, S. Hahner, M. Quinkler, T. Dekkers, J. Deinum, M. Biehl, B.G. Keevil, C.H.L. Shackleton, J.J. Deeks, A.K. Walch, F. Beuschlein, M. Reincke, Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism. JCI Insight 2(8) (2017). pii: 93136. https://doi.org/10.1172/jci.insight.93136

  15. I.I. Androulakis, G.A. Kaltsas, G.E. Kollias, A.C. Markou, A.K. Gouli, D.A. Thomas, K.I. Alexandraki, C.M. Papamichael, D.J. Hadjidakis, G.P. Piaditis, Patients with apparently nonfunctioning adrenal incidentalomas may be at increased cardiovascular risk due to excessive cortisol secretion. J. Clin. Endocrinol. Metab. 99(8), 2754–2762 (2014). https://doi.org/10.1210/jc.2013-4064

    Article  CAS  PubMed  Google Scholar 

  16. National Clinical Guideline Centre (UK). London: Royal College of Physicians (UK); 2012.

  17. G. Mazziotti, A. Angeli, J.P. Bilezikian, E. Canalis, A. Giustina, Glucocorticoid-induced osteoporosis: an update. Trends Endocrinol. Metab. 17(4), 144–149 (2006). https://doi.org/10.1016/j.tem.2006.03.009

    Article  CAS  PubMed  Google Scholar 

  18. V. Shalhoub, D. Conlon, M. Tassinari, C. Quinn, N. Partridge, G.S. Stein, J.B. Lian. Glucocorticoids promote development of the osteoblast phenotype by selectively modulating expression of cell growth and differentiation associated genes. J. Cell. Biochem. 50(4), 425–440 (1992). https://doi.org/10.1002/jcb.240500411

    Article  CAS  PubMed  Google Scholar 

  19. H. Zhou, M.S. Cooper, M.J. Seibel, Endogenous glucocorticoids and bone. Bone Res. 1(2), 107–119 (2013). https://doi.org/10.4248/BR201302001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. R.S. Hardy, H. Zhou, M.J. Seibel, M.S. Cooper, Glucocorticoids and bone: consequences of endogenous and exogenous excess and replacement therapy. Endocr. Rev. (2018). https://doi.org/10.1210/er.2018-00097

    Article  PubMed  Google Scholar 

  21. I. Chiodini, C.E. Vainicher, V. Morelli, S. Palmieri, E. Cairoli, A.S. Salcuni, M. Copetti, A. Scillitani, Mechanisms in endocrinology: endogenous subclinical hypercortisolism and bone: a clinical review. Eur. J. Endocrinol. 175(6), R265–R282 (2016). https://doi.org/10.1530/EJE-16-0289

    Article  CAS  PubMed  Google Scholar 

  22. E.R. Weikum, M.T. Knuesel, E.A. Ortlund, K.R. Yamamoto, Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat. Rev. Mol. Cell Biol. 18(3), 159–174 (2017). https://doi.org/10.1038/nrm.2016.152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Z. Wu, N.L. Bucher, S.R. Farmer, Induction of peroxisome proliferator-activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Mol. Cell. Biol. 16(8), 4128–4136 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. K. Ohnaka, M. Tanabe, H. Kawate, H. Nawata, R. Takayanagi, Glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts. Biochem. Biophys. Res. Commun. 329(1), 177–181 (2005). https://doi.org/10.1016/j.bbrc.2005.01.117

    Article  CAS  PubMed  Google Scholar 

  25. S. Hildebrandt, U. Baschant, S. Thiele, J. Tuckermann, L.C. Hofbauer, M. Rauner, Glucocorticoids suppress Wnt16 expression in osteoblasts in vitro and in vivo. Sci. Rep. 8(1), 8711 (2018). https://doi.org/10.1038/s41598-018-26300-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. W. Mak, X. Shao, C.R. Dunstan, M.J. Seibel, H. Zhou, Biphasic glucocorticoid-dependent regulation of Wnt expression and its inhibitors in mature osteoblastic cells. Calcif. Tissue Int. 85(6), 538–545 (2009). https://doi.org/10.1007/s00223-009-9303-1

    Article  CAS  PubMed  Google Scholar 

  27. I. Carcamo-Orive, A. Gaztelumendi, J. Delgado, N. Tejados, A. Dorronsoro, J. Fernandez-Rueda, D.J. Pennington, C. Trigueros, Regulation of human bone marrow stromal cell proliferation and differentiation capacity by glucocorticoid receptor and AP-1 crosstalk. J. Bone Miner. Res. 25(10), 2115–2125 (2010). https://doi.org/10.1002/jbmr.120

    Article  CAS  PubMed  Google Scholar 

  28. J. Compston, Glucocorticoid-induced osteoporosis: an update. Endocrine 61(1), 7–16 (2018). https://doi.org/10.1007/s12020-018-1588-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. A.Y. Sato, M. Cregor, J. Delgado-Calle, K.W. Condon, M.R. Allen, M. Peacock, L.I. Plotkin, T. Bellido, Protection from glucocorticoid-induced osteoporosis by anti-catabolic signaling in the absence of Sost/Sclerostin. J. Bone Miner. Res. 31(10), 1791–1802 (2016). https://doi.org/10.1002/jbmr.2869

    Article  CAS  PubMed  Google Scholar 

  30. W. Yao, W. Dai, L. Jiang, E.Y. Lay, Z. Zhong, R.O. Ritchie, X. Li, H. Ke, N.E. Lane, Sclerostin-antibody treatment of glucocorticoid-induced osteoporosis maintained bone mass and strength. Osteoporos. Int. 27(1), 283–294 (2016). https://doi.org/10.1007/s00198-015-3308-6

    Article  CAS  PubMed  Google Scholar 

  31. Z. Achiou, H. Toumi, J. Touvier, A. Boudenot, R. Uzbekov, M.S. Ominsky, S. Pallu, E. Lespessailles, Sclerostin antibody and interval treadmill training effects in a rodent model of glucocorticoid-induced osteopenia. Bone 81, 691–701 (2015). https://doi.org/10.1016/j.bone.2015.09.010

    Article  CAS  PubMed  Google Scholar 

  32. L.C. Hofbauer, F. Gori, B.L. Riggs, D.L. Lacey, C.R. Dunstan, T.C. Spelsberg, S. Khosla, Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology 140(10), 4382–4389 (1999). https://doi.org/10.1210/endo.140.10.7034

    Article  CAS  PubMed  Google Scholar 

  33. C. Swanson, M. Lorentzon, H.H. Conaway, U.H. Lerner, Glucocorticoid regulation of osteoclast differentiation and expression of receptor activator of nuclear factor-kappaB (NF-kappaB) ligand, osteoprotegerin, and receptor activator of NF-kappaB in mouse calvarial bones. Endocrinology 147(7), 3613–3622 (2006). https://doi.org/10.1210/en.2005-0717

    Article  CAS  PubMed  Google Scholar 

  34. M. Piemontese, J. Xiong, Y. Fujiwara, J.D. Thostenson, C.A. O’Brien, Cortical bone loss caused by glucocorticoid excess requires RANKL production by osteocytes and is associated with reduced OPG expression in mice. Am. J. Physiol. Endocrinol. Metab. 311(3), E587–E593 (2016). https://doi.org/10.1152/ajpendo.00219.2016

    Article  PubMed  PubMed Central  Google Scholar 

  35. J.T. Warren, W. Zou, C.E. Decker, N. Rohatgi, C.A. Nelson, D.H. Fremont, S.L. Teitelbaum, Correlating RANK ligand/RANK binding kinetics with osteoclast formation and function. J. Cell. Biochem. 116(11), 2476–2483 (2015). https://doi.org/10.1002/jcb.25191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. J. Rubin, D.M. Biskobing, L. Jadhav, D. Fan, M.S. Nanes, S. Perkins, X. Fan, Dexamethasone promotes expression of membrane-bound macrophage colony-stimulating factor in murine osteoblast-like cells. Endocrinology 139(3), 1006–1012 (1998). https://doi.org/10.1210/endo.139.3.5778

    Article  CAS  PubMed  Google Scholar 

  37. M.J. Seibel, M.S. Cooper, H. Zhou Glucocorticoid-induced osteoporosis: mechanisms, management, and future perspectives. Lancet Diabetes Endocrinol. 1(1), 59–70 (2013). https://doi.org/10.1016/S2213-8587(13)70045-7

    Article  CAS  PubMed  Google Scholar 

  38. V. Morelli, F. Donadio, C. Eller-Vainicher, V. Cirello, L. Olgiati, C. Savoca, E. Cairoli, A.S. Salcuni, P. Beck-Peccoz, I. Chiodini, Role of glucocorticoid receptor polymorphism in adrenal incidentalomas. Eur. J. Clin. Invest. 40(9), 803–811 (2010). https://doi.org/10.1111/j.1365-2362.2010.02330.x

    Article  CAS  PubMed  Google Scholar 

  39. M.S. Cooper, E.H. Rabbitt, P.E. Goddard, W.A. Bartlett, M. Hewison, P.M. Stewart, Osteoblastic 11beta-hydroxysteroid dehydrogenase type 1 activity increases with age and glucocorticoid exposure. J. Bone Miner. Res. 17(6), 979–986 (2002). https://doi.org/10.1359/jbmr.2002.17.6.979

    Article  CAS  PubMed  Google Scholar 

  40. M. Torlontano, I. Chiodini, M. Pileri, G. Guglielmi, M. Cammisa, S. Modoni, V. Carnevale, V. Trischitta, A. Scillitani, Altered bone mass and turnover in female patients with adrenal incidentaloma: the effect of subclinical hypercortisolism. J. Clin. Endocrinol. Metab. 84(7), 2381–2385 (1999). https://doi.org/10.1210/jcem.84.7.5856

    Article  CAS  PubMed  Google Scholar 

  41. I. Chiodini, M. Torlontano, V. Carnevale, G. Guglielmi, M. Cammisa, V. Trischitta, A. Scillitani, Bone loss rate in adrenal incidentalomas: a longitudinal study. J. Clin. Endocrinol. Metab. 86(11), 5337–5341 (2001). https://doi.org/10.1210/jcem.86.11.8022

    Article  CAS  PubMed  Google Scholar 

  42. G. Osella, M. Terzolo, G. Reimondo, A. Piovesan, A. Pia, A. Termine, P. Paccotti, A. Angeli, Serum markers of bone and collagen turnover in patients with Cushing’s syndrome and in subjects with adrenal incidentalomas. J. Clin. Endocrinol. Metab. 82(10), 3303–3307 (1997). https://doi.org/10.1210/jcem.82.10.4282

    Article  CAS  PubMed  Google Scholar 

  43. D. Hadjidakis, S. Tsagarakis, C. Roboti, M. Sfakianakis, V. Iconomidou, S.A. Raptis, N. Thalassinos, Does subclinical hypercortisolism adversely affect the bone mineral density of patients with adrenal incidentalomas? Clin. Endocrinol. (Oxf.). 58(1), 72–77 (2003)

    Article  CAS  PubMed  Google Scholar 

  44. L. Tauchmanova, R. Pivonello, M.C. De Martino, A. Rusciano, M. De Leo, C. Ruosi, C. Mainolfi, G. Lombardi, M. Salvatore, A. Colao, Effects of sex steroids on bone in women with subclinical or overt endogenous hypercortisolism. Eur. J. Endocrinol. 157(3), 359–366 (2007). https://doi.org/10.1530/EJE-07-0137

    Article  CAS  PubMed  Google Scholar 

  45. I. Chiodini, L. Tauchmanova, M. Torlontano, C. Battista, G. Guglielmi, M. Cammisa, A. Colao, V. Carnevale, R. Rossi, S. Di Lembo, V. Trischitta, A. Scillitani, Bone involvement in eugonadal male patients with adrenal incidentaloma and subclinical hypercortisolism. J. Clin. Endocrinol. Metab. 87(12), 5491–5494 (2002). https://doi.org/10.1210/jc.2002-020399

    Article  CAS  PubMed  Google Scholar 

  46. A. Sartorio, A. Conti, S. Ferrero, S. Giambona, T. Re, E. Passini, B. Ambrosi, Evaluation of markers of bone and collagen turnover in patients with active and preclinical Cushing’s syndrome and in patients with adrenal incidentaloma. Eur. J. Endocrinol. 138(2), 146–152 (1998)

    Article  CAS  PubMed  Google Scholar 

  47. R. Rossi, L. Tauchmanova, A. Luciano, M. Di Martino, C. Battista, L. Del Viscovo, V. Nuzzo, G. Lombardi, Subclinical Cushing’s syndrome in patients with adrenal incidentaloma: clinical and biochemical features. J. Clin. Endocrinol. Metab. 85(4), 1440–1448 (2000). https://doi.org/10.1210/jcem.85.4.6515

    Article  CAS  PubMed  Google Scholar 

  48. G. Osella, G. Reimondo, P. Peretti, A. Ali, P. Paccotti, A. Angeli, M. Terzolo, The patients with incidentally discovered adrenal adenoma (incidentaloma) are not at increased risk of osteoporosis. J. Clin. Endocrinol. Metab. 86(2), 604–607 (2001). https://doi.org/10.1210/jcem.86.2.7178

    Article  CAS  PubMed  Google Scholar 

  49. I. Chiodini, G. Guglielmi, C. Battista, V. Carnevale, M. Torlontano, M. Cammisa, V. Trischitta, A. Scillitani, Spinal volumetric bone mineral density and vertebral fractures in female patients with adrenal incidentalomas: the effects of subclinical hypercortisolism and gonadal status. J. Clin. Endocrinol. Metab. 89(5), 2237–2241 (2004). https://doi.org/10.1210/jc.2003-031413

    Article  CAS  PubMed  Google Scholar 

  50. I. Chiodini, V. Morelli, B. Masserini, A.S. Salcuni, C. Eller-Vainicher, R. Viti, F. Coletti, G. Guglielmi, C. Battista, V. Carnevale, L. Iorio, P. Beck-Peccoz, M. Arosio, B. Ambrosi, A. Scillitani, Bone mineral density, prevalence of vertebral fractures, and bone quality in patients with adrenal incidentalomas with and without subclinical hypercortisolism: an Italian multicenter study. J. Clin. Endocrinol. Metab. 94(9), 3207–3214 (2009). https://doi.org/10.1210/jc.2009-0468

    Article  CAS  PubMed  Google Scholar 

  51. V. Morelli, C. Eller-Vainicher, A.S. Salcuni, F. Coletti, L. Iorio, G. Muscogiuri, S. Della Casa, M. Arosio, B. Ambrosi, P. Beck-Peccoz, I. Chiodini, Risk of new vertebral fractures in patients with adrenal incidentaloma with and without subclinical hypercortisolism: a multicenter longitudinal study. J. Bone Miner. Res. 26(8), 1816–1821 (2011). https://doi.org/10.1002/jbmr.398

    Article  PubMed  Google Scholar 

  52. C. Eller-Vainicher, V. Morelli, F.M. Ulivieri, S. Palmieri, V.V. Zhukouskaya, E. Cairoli, R. Pino, A. Naccarato, A. Scillitani, P. Beck-Peccoz, I. Chiodini, Bone quality, as measured by trabecular bone score in patients with adrenal incidentalomas with and without subclinical hypercortisolism. J. Bone Miner. Res. 27(10), 2223–2230 (2012). https://doi.org/10.1002/jbmr.1648

    Article  CAS  PubMed  Google Scholar 

  53. H. Vinolas, V. Grouthier, N. Mehsen-Cetre, A. Boisson, R. Winzenrieth, T. Schaeverbeke, C. Mesguich, L. Bordenave, A. Tabarin, Assessment of vertebral microarchitecture in overt and mild Cushing’s syndrome using trabecular bone score. Clin. Endocrinol. (Oxf) (2018). https://doi.org/10.1111/cen.13743

    Article  PubMed  Google Scholar 

  54. S.A. Paschou, E. Kandaraki, F. Dimitropoulou, D.G. Goulis, A. Vryonidou, Subclinical Cushing’s syndrome in patients with bilateral compared to unilateral adrenal incidentalomas: a systematic review and meta-analysis. Endocrine 51(2), 225–235 (2016). https://doi.org/10.1007/s12020-015-0776-6

    Article  CAS  PubMed  Google Scholar 

  55. V. Morelli, S. Palmieri, A.S. Salcuni, C. Eller-Vainicher, E. Cairoli, V. Zhukouskaya, A. Scillitani, P. Beck-Peccoz, I. Chiodini, Bilateral and unilateral adrenal incidentalomas: biochemical and clinical characteristics. Eur. J. Endocrinol. 168(2), 235–241 (2013). https://doi.org/10.1530/EJE-12-0777

    Article  CAS  PubMed  Google Scholar 

  56. A. Tabarin, Do the diagnostic criteria for subclinical hypercortisolism exist? Ann. Endocrinol. (Paris) 79(3), 146–148 (2018). https://doi.org/10.1016/j.ando.2018.03.013

    Article  Google Scholar 

  57. V. Morelli, C. Eller-Vainicher, S. Palmieri, E. Cairoli, A.S. Salcuni, A. Scillitani, V. Carnevale, S. Corbetta, M. Arosio, S. Della Casa, G. Muscogiuri, A. Spada, I. Chiodini, Prediction of vertebral fractures in patients with monolateral adrenal incidentalomas. J. Clin. Endocrinol. Metab. 101(7), 2768–2775 (2016). https://doi.org/10.1210/jc.2016-1423

    Article  CAS  PubMed  Google Scholar 

  58. I. Chiodini, V. Morelli, A.S. Salcuni, C. Eller-Vainicher, M. Torlontano, F. Coletti, L. Iorio, A. Cuttitta, A. Ambrosio, L. Vicentini, F. Pellegrini, M. Copetti, P. Beck-Peccoz, M. Arosio, B. Ambrosi, V. Trischitta, A. Scillitani, Beneficial metabolic effects of prompt surgical treatment in patients with an adrenal incidentaloma causing biochemical hypercortisolism. J. Clin. Endocrinol. Metab. 95(6), 2736–2745 (2010). https://doi.org/10.1210/jc.2009-2387

    Article  CAS  PubMed  Google Scholar 

  59. I. Perogamvros, D.A. Vassiliadi, O. Karapanou, E. Botoula, M. Tzanela, S. Tsagarakis, Biochemical and clinical benefits of unilateral adrenalectomy in patients with subclinical hypercortisolism and bilateral adrenal incidentalomas. Eur. J. Endocrinol. 173(6), 719–725 (2015). https://doi.org/10.1530/EJE-15-0566

    Article  CAS  PubMed  Google Scholar 

  60. A.S. Salcuni, V. Morelli, C. Eller Vainicher, S. Palmieri, E. Cairoli, A. Spada, A. Scillitani, I. Chiodini, Adrenalectomy reduces the risk of vertebral fractures in patients with monolateral adrenal incidentalomas and subclinical hypercortisolism. Eur. J. Endocrinol. 174(3), 261–269 (2016). https://doi.org/10.1530/EJE-15-0977

    Article  CAS  PubMed  Google Scholar 

  61. V.S. Chhokar, Y. Sun, S.K. Bhattacharya, R.A. Ahokas, L.K. Myers, Z. Xing, R.A. Smith, I.C. Gerling, K.T. Weber, Hyperparathyroidism and the calcium paradox of aldosteronism. Circulation 111(7), 871–878 (2005). https://doi.org/10.1161/01.CIR.0000155621.10213.06

    Article  CAS  PubMed  Google Scholar 

  62. A. Vidal, Y. Sun, S.K. Bhattacharya, R.A. Ahokas, I.C. Gerling, K.T. Weber, Calcium paradox of aldosteronism and the role of the parathyroid glands. Am. J. Physiol. Heart Circ. Physiol. 290(1), H286–H294 (2006). https://doi.org/10.1152/ajpheart.00535.2005

    Article  CAS  PubMed  Google Scholar 

  63. A.S. Salcuni, S. Palmieri, V. Carnevale, V. Morelli, C. Battista, V. Guarnieri, G. Guglielmi, G. Desina, C. Eller-Vainicher, P. Beck-Peccoz, A. Scillitani, I. Chiodini, Bone involvement in aldosteronism. J. Bone Miner. Res. 27(10), 2217–2222 (2012). https://doi.org/10.1002/jbmr.1660

    Article  CAS  PubMed  Google Scholar 

  64. L. Petramala, L. Zinnamosca, A. Settevendemmie, C. Marinelli, M. Nardi, A. Concistre, F. Corpaci, G. Tonnarini, G. De Toma, C. Letizia, Bone and mineral metabolism in patients with primary aldosteronism. Int. J. Endocrinol. 2014, 836529 (2014). https://doi.org/10.1155/2014/836529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. M. Notsu, M. Yamauchi, M. Yamamoto, K. Nawata, T. Sugimoto, Primary aldosteronism as a risk factor for vertebral fracture. J. Clin. Endocrinol. Metab. 102(4), 1237–1243 (2017). https://doi.org/10.1210/jc.2016-3206

    Article  PubMed  Google Scholar 

  66. V.C. Wu, C.H. Chang, C.Y. Wang, Y.H. Lin, T.W. Kao, P.C. Lin, T.S. Chu, Y.S. Chang, L. Chen, K.D. Wu, S.J. Chueh, Risk of fracture in primary aldosteronism: a population-based cohort study. J. Bone Miner. Res. 32(4), 743–752 (2017). https://doi.org/10.1002/jbmr.3033

    Article  CAS  PubMed  Google Scholar 

  67. S. Beavan, A. Horner, S. Bord, D. Ireland, J. Compston, Colocalization of glucocorticoid and mineralocorticoid receptors in human bone. J. Bone Miner. Res. 16(8), 1496–1504 (2001). https://doi.org/10.1359/jbmr.2001.16.8.1496

    Article  CAS  PubMed  Google Scholar 

  68. M.K. Agarwal, F. Mirshahi, M. Mirshahi, S. Bracq, J. Chentoufi, M. Hott, A. Jullienne, P.J. Marie, Evidence for receptor-mediated mineralocorticoid action in rat osteoblastic cells. Am. J. Physiol. 270(4 Pt 1), C1088–C1095 (1996)

    Article  CAS  PubMed  Google Scholar 

  69. C. Maniero, A. Fassina, V. Guzzardo, L. Lenzini, G. Amadori, M.R. Pelizzo, C. Gomez-Sanchez, G.P. Rossi, Primary hyperparathyroidism with concurrent primary aldosteronism. Hypertension 58(3), 341–346 (2011). https://doi.org/10.1161/HYPERTENSIONAHA.111.173948

    Article  CAS  PubMed  Google Scholar 

  70. J. Brown, I.H. de Boer, C. Robinson-Cohen, D.S. Siscovick, B. Kestenbaum, M. Allison, A. Vaidya, Aldosterone, parathyroid hormone, and the use of renin-angiotensin-aldosterone system inhibitors: the multi-ethnic study of atherosclerosis. J. Clin. Endocrinol. Metab. 100(2), 490–499 (2015). https://doi.org/10.1210/jc.2014-3949

    Article  CAS  PubMed  Google Scholar 

  71. E. Fischer, A. Hannemann, R. Rettig, W. Lieb, M. Nauck, A. Pallauf, M. Bidlingmaier, F. Beuschlein, H. Wallaschofski, M. Reincke, A high aldosterone to renin ratio is associated with high serum parathyroid hormone concentrations in the general population. J. Clin. Endocrinol. Metab. 99(3), 965–971 (2014). https://doi.org/10.1210/jc.2013-3214

    Article  CAS  PubMed  Google Scholar 

  72. P.H. Law, Y. Sun, S.K. Bhattacharya, V.S. Chhokar, K.T. Weber, Diuretics and bone loss in rats with aldosteronism. J. Am. Coll. Cardiol. 46(1), 142–146 (2005). https://doi.org/10.1016/j.jacc.2005.03.055

    Article  CAS  PubMed  Google Scholar 

  73. A.L. Runyan, V.S. Chhokar, Y. Sun, S.K. Bhattacharya, J.W. Runyan, K.T. Weber, Bone loss in rats with aldosteronism. Am. J. Med. Sci. 330(1), 1–7 (2005)

    Article  PubMed  Google Scholar 

  74. E. Rossi, C. Sani, F. Perazzoli, M.C. Casoli, A. Negro, C. Dotti, Alterations of calcium metabolism and of parathyroid function in primary aldosteronism, and their reversal by spironolactone or by surgical removal of aldosterone-producing adenomas. Am. J. Hypertens. 8(9), 884–893 (1995). https://doi.org/10.1016/0895-7061(95)00182-O

    Article  CAS  PubMed  Google Scholar 

  75. L.D. Carbone, J.D. Cross, S.H. Raza, A.J. Bush, R.J. Sepanski, S. Dhawan, B.Q. Khan, M. Gupta, K. Ahmad, R.N. Khouzam, D.A. Dishmon, J.P. Nesheiwat, M.A. Hajjar, W.A. Chishti, W. Nasser, M. Khan, C.R. Womack, T. Cho, A.R. Haskin, K.T. Weber, Fracture risk in men with congestive heart failure risk reduction with spironolactone. J. Am. Coll. Cardiol. 52(2), 135–138 (2008). https://doi.org/10.1016/j.jacc.2008.03.039

    Article  PubMed  Google Scholar 

  76. H.H. Loh, N.A. Kamaruddin, R. Zakaria, N. Sukor, Improvement of bone turnover markers and bone mineral density following treatment of primary aldosteronism. Minerva Endocrinol. 43(2), 117–125 (2016)

    PubMed  Google Scholar 

  77. N. Verheyen, M.R. Grubler, A. Meinitzer, C. Trummer, V. Schwetz, K. Amrein, H.P. Dimai, W. Marz, C. Catena, D. von Lewinski, J. Voelkl, I. Alesutan, A. Fahrleitner-Pammer, H. Brussee, S. Pilz, A. Tomaschitz, Effect of eplerenone on markers of bone turnover in patients with primary hyperparathyroidism—The randomized, placebo-controlled EPATH trial. Bone 105, 212–217 (2017). https://doi.org/10.1016/j.bone.2017.08.030

    Article  CAS  PubMed  Google Scholar 

  78. J.P. Granger, S. Kassab, J. Novak, J.F. Reckelhoff, B. Tucker, M.T. Miller, Role of nitric oxide in modulating renal function and arterial pressure during chronic aldosterone excess. Am. J. Physiol. 276(1 Pt 2), R197–R202 (1999)

    CAS  PubMed  Google Scholar 

  79. G. Kamalov, S.K. Bhattacharya, K.T. Weber, Congestive heart failure: where homeostasis begets dyshomeostasis. J. Cardiovasc. Pharmacol. 56(3), 320–328 (2010). https://doi.org/10.1097/FJC.0b013e3181ed064f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. V.S. Chhokar, Y. Sun, S.K. Bhattacharya, R.A. Ahokas, L.K. Myers, Z. Xing, R.A. Smith, I.C. Gerling, K.T. Weber, Loss of bone minerals and strength in rats with aldosteronism. Am. J. Physiol. Heart Circ. Physiol. 287(5), H2023–H2026 (2004). https://doi.org/10.1152/ajpheart.00477.2004

    Article  CAS  PubMed  Google Scholar 

  81. A.A. Zia, G. Kamalov, K.P. Newman, J.E. McGee, S.K. Bhattacharya, R.A. Ahokas, Y. Sun, I.C. Gerling, K.T. Weber, From aldosteronism to oxidative stress: the role of excessive intracellular calcium accumulation. Hypertens. Res. 33(11), 1091–1101 (2010). https://doi.org/10.1038/hr.2010.159

    Article  CAS  PubMed  Google Scholar 

  82. A.A. Herrada, C. Campino, C.A. Amador, L.F. Michea, C.E. Fardella, A.M. Kalergis, Aldosterone as a modulator of immunity: implications in the organ damage. J. Hypertens. 29(9), 1684–1692 (2011). https://doi.org/10.1097/HJH.0b013e32834a4c75

    Article  CAS  PubMed  Google Scholar 

  83. F. Atashi, A. Modarressi, M.S. Pepper, The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem. Cells Dev. 24(10), 1150–1163 (2015). https://doi.org/10.1089/scd.2014.0484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. F. Buffolo, S. Monticone, T.A. Williams, D. Rossato, J. Burrello, M. Tetti, F. Veglio, P. Mulatero. Subtype diagnosis of primary aldosteronism: is adrenal vein sampling always necessary? Int. J. Mol. Sci. 18(4) (2017). https://doi.org/10.3390/ijms18040848

    Article  PubMed Central  Google Scholar 

  85. L. Ceccoli, V. Ronconi, L. Giovannini, M. Marcheggiani, F. Turchi, M. Boscaro, G. Giacchetti, Bone health and aldosterone excess. Osteoporos. Int. 24(11), 2801–2807 (2013). https://doi.org/10.1007/s00198-013-2399-1

    Article  CAS  PubMed  Google Scholar 

  86. S. Pilz, K. Kienreich, C. Drechsler, E. Ritz, A. Fahrleitner-Pammer, M. Gaksch, A. Meinitzer, W. Marz, T.R. Pieber, A. Tomaschitz, Hyperparathyroidism in patients with primary aldosteronism: cross-sectional and interventional data from the GECOH study. J. Clin. Endocrinol. Metab. 97(1), E75–E79 (2012). https://doi.org/10.1210/jc.2011-2183

    Article  CAS  PubMed  Google Scholar 

  87. C. Maniero, A. Fassina, T.M. Seccia, A. Toniato, M. Iacobone, M. Plebani, R. De Caro, L.A. Calo, A.C. Pessina, G.P. Rossi, Mild hyperparathyroidism: a novel surgically correctable feature of primary aldosteronism. J. Hypertens. 30(2), 390–395 (2012). https://doi.org/10.1097/HJH.0b013e32834f0451

    Article  CAS  PubMed  Google Scholar 

  88. A.S. Salcuni, V. Carnevale, C. Battista, S. Palmieri, C. Eller-Vainicher, V. Guarnieri, F. Pugliese, G. Guglielmi, G. Desina, S. Minisola, I. Chiodini, A. Scillitani, Primary aldosteronism as a cause of secondary osteoporosis. Eur. J. Endocrinol. 177(5), 431–437 (2017). https://doi.org/10.1530/EJE-17-0417

    Article  CAS  PubMed  Google Scholar 

  89. L.A. van Mierlo, L.R. Arends, M.T. Streppel, M.P. Zeegers, F.J. Kok, D.E. Grobbee, J.M. Geleijnse, Blood pressure response to calcium supplementation: a meta-analysis of randomized controlled trials. J. Hum. Hypertens. 20(8), 571–580 (2006). https://doi.org/10.1038/sj.jhh.1002038

    Article  CAS  PubMed  Google Scholar 

  90. F. Beuschlein, M. Reincke, W. Arlt, The impact of Connshing’s syndrome—mild cortisol excess in primary aldosteronism drives diabetes risk. J. Hypertens. 35(12), 2548 (2017). https://doi.org/10.1097/HJH.0000000000001550

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Altieri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

The original version of this article was revised: The typo in Figure 1 is corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altieri, B., Muscogiuri, G., Paschou, S.A. et al. Adrenocortical incidentalomas and bone: from molecular insights to clinical perspectives. Endocrine 62, 506–516 (2018). https://doi.org/10.1007/s12020-018-1696-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-018-1696-z

Keywords:

Navigation