Skip to main content

Advertisement

Log in

A score derived from routine biochemical parameters increases the diagnostic accuracy of chromogranin A in detecting patients with neuroendocrine neoplasms

  • Endocrine Methods and Techniques
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Background

Chromogranin A (CgA) is a valuable biomarker for detection and follow-up of patients with neuroendocrine neoplasms (NENs). However, various comorbidities may influence serum CgA, which decreases its diagnostic accuracy. We aimed to investigate which laboratory parameters are independently associated with increased CgA in real-life setting and to develop a scoring system, which could improve the diagnostic accuracy of CgA in detecting patients with NENs.

Methods

This retrospective study included 55 treatment naïve patients with NENs and160 patients with various comorbidities but without NEN (nonNENs). Scoring system (CgA-score) was developed based on z-scores obtained from receiver operating curve analysis for each parameter that was associated with elevated serum CgA in nonNENs.

Results

CgA correlated positively with serum BUN, creatinine, α2-globulin, red-cell distribution width, erythrocyte sedimentation rate, plasma glucose and correlated inversely with hemoglobin, thrombocytes and serum albumin. Serum CgA was also associated with the presence of chronic renal failure, arterial hypertension and diabetes and the use of PPI. In the entire study population, CgA showed an area under the curve of 0.656. Aforementioned parameters were used to develop a CgA-score. In a cohort of patients with CgA-score <12.0 (N = 87), serum CgA >156.5 ng/ml had 77.8% sensitivity and 91.5% specificity for detecting NENs (AUC 0.841, 95% CI 0.713–0.969, P < 0.001). Serum CgA had no diagnostic value in detecting NENs in patients with CgA-score >12.0 (AUC 0.554, 95% CI 0.405–0.702, P = 0.430).

Conclusions

CgA-score encompasses a wide range of comorbidities and represents a promising tool that could improve diagnostic performance of CgA in everyday clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Taupenot, K.L. Harper, D.T. O’Connor, The chromogranin–secretogranin family. N. Engl. J. Med. 348, 1134–1149 (2003)

    Article  CAS  PubMed  Google Scholar 

  2. Y.P. Loh, Y. Cheng, S.K. Mahata, A. Corti, B. Tota, Chromogranin A and derived peptides in health and disease. J. Mol. Neurosci. 48, 347–356 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. D. Belloni, S. Scabini, C. Foglieni, L. Veschini, A. Giazzon, B. Colombo et al. The vasostatin-I fragment of chromogranin A inhibits VEGF-induced endothelial cell proliferation and migration. Faseb. J. 21, 3052–3062 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. E. Ferrero, S. Scabini, E. Magni, C. Foglieni, D. Belloni, B. Colombo et al. Chromogranin A protects vessels against tumor necrosis factor-induced vascular leakage. FASEB J. 18, 554–556 (2004)

    Article  CAS  PubMed  Google Scholar 

  5. B. Tota, S. Gentile, T. Pasqua, E. Bassino, H. Koshimizu, N.X. Cawley et al. The novel chromogranin A-derived serpinin and pyroglutaminated serpinin peptides are positive cardiac β-adrenergic-like inotropes. FASEB J. Fed. Am. Soc. Exp. Biol. 26, 2888–2898 (2012)

    CAS  PubMed  Google Scholar 

  6. V. Sánchez-Margalet, C. González-Yanes, S. Najib, J. Santos-Álvarez, Metabolic effects and mechanism of action of the chromogranin A-derived peptide pancreastatin. Regul. Pept. 161, 8–14 (2010)

    Article  PubMed  Google Scholar 

  7. M.M. Fung, R.M. Salem, P. Mehtani, B. Thomas, C.F. Lu, B. Perez et al. Direct vasoactive effects of the chromogranin A (CHGA) peptide catestatin in humans in vivo. Clin. Exp. Hypertens. 32, 278–287 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. D. Zhang, T. Lavaux, A.-C. Voegeli, T. Lavigne, V. Castelain, N. Meyer et al. Prognostic value of chromogranin a at admission in critically ill patients: a cohort study in a medical intensive care unit. Clin. Chem. 54, 1497–1503 (2008)

    Article  CAS  PubMed  Google Scholar 

  9. G. Di Comite, C.M. Rossi, A. Marinosci, K. Lolmede, E. Baldissera, P. Aiello et al. Circulating chromogranin A reveals extra-articular involvement in patients with rheumatoid arthritis and curbs TNF- -elicited endothelial activation. J. Leukoc. Biol. 85, 81–87 (2008)

    Article  PubMed  Google Scholar 

  10. V. Sciola, S. Massironi, D. Conte, F. Caprioli, S. Ferrero, C. Ciafardini et al. Plasma chromogranin a in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 15, 867–871 (2009)

    Article  PubMed  Google Scholar 

  11. A. Zissimopoulos, S. Vradelis, M. Konialis, D. Chadolias, A. Bampali, T. Constantinidis et al. Chromogranin A as a biomarker of disease activity and biologic therapy in inflammatory bowel disease: a prospective observational study. Scand. J. Gastroenterol. 49, 942–949 (2014)

    Article  CAS  PubMed  Google Scholar 

  12. P. Gut, A. Czarnywojtek, J. Fischbach, M. Bączyk, K. Ziemnicka, E. Wrotkowska et al. Chromogranin A—unspecific neuroendocrine marker. Clinical utility and potential diagnostic pitfalls. Arch. Med. Sci. Terme. Publ. 12, 1–9 (2016)

    CAS  Google Scholar 

  13. P.R. Bech, R. Ramachandran, W.S. Dhillo, N.M. Martin, S.R. Bloom, Quantifying the effects of renal impairment on plasma concentrations of the neuroendocrine neoplasia biomarkers chromogranin A, chromogranin B, and cocaine and amphetamine-regulated transcript. Clin. Chem. 58, 941–943 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. C. Ceconi, R. Ferrari, T. Bachetti, C. Opasich, M. Volterrani, B. Colombo et al. Chromogranin A in heart failure. A novel neurohumoral factor and a predictor for mortality. Eur. Heart J. 23, 967–974 (2002)

    Article  CAS  PubMed  Google Scholar 

  15. M.E. Estensen, A. Hognestad, U. Syversen, I. Squire, L. Ng, J. Kjekshus et al.Prognostic value of plasma chromogranin A levels in patients with complicated myocardial infarction. Am. Heart J. 152, 927.e1–927.e6 (2006)

    Article  Google Scholar 

  16. M.A. Takiyyuddin, R.J. Parmer, M.T. Kailasam, J.H. Cervenka, B. Kennedy, M.G. Ziegler et al., Chromogranin A in human hypertension. Hypertension 26, 213–220 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. M. Peracchi, C. Gebbia, G. Basilisco, M. Quatrini, C. Tarantino, C. Vescarelli et al. Plasma chromogranin A in patients with autoimmune chronic atrophic gastritis, enterochromaffin-like cell lesions and gastric carcinoids. Eur. J. Endocrinol. 152, 443–448 (2005)

    Article  CAS  PubMed  Google Scholar 

  18. I. Pregun, L. Herszényi, M. Juhász, P. Miheller, I. Hritz, A. Patócs et al. Effect of proton-pump inhibitor therapy on serum chromogranin a level. Digestion 84, 22–28 (2011)

    Article  CAS  PubMed  Google Scholar 

  19. K. Oberg, A. Couvelard, G. Delle Fave, D. Gross, A. Grossman, R.T. Jensen et al. ENETS Consensus Guidelines for Standard of Care in Neuroendocrine Tumours: Biochemical Markers. Neuroendocrinology 105, 201–211 (2017)

    Article  CAS  PubMed  Google Scholar 

  20. S. Welin, M. Stridsberg, J. Cunningham, D. Granberg, B. Skogseid, B. Eriksson et al. Elevated plasma chromogranin a is the first indication of recurrence in radically operated midgut carcinoid tumors. Neuroendocrinology 89, 302–307 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. J.C. Yao, C. Lombard-Bohas, E. Baudin, L.K. Kvols, P. Rougier, P. Ruszniewski et al. Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J. Clin. Oncol. 28, 69–76 (2010)

    Article  CAS  PubMed  Google Scholar 

  22. B. Lawrence, B.I. Gustafsson, M. Kidd, M. Pavel, B. Svejda, I.M. Modlin, The clinical relevance of chromogranin a as a biomarker for gastroenteropancreatic neuroendocrine tumors. Endocrinol. Metab. Clin. North Am. 40, 111–134 (2011)

    Article  CAS  PubMed  Google Scholar 

  23. V. Marotta, V. Nuzzo, T. Ferrara, A. Zuccoli, M. Masone, L. Nocerino et al. Limitations of Chromogranin A in clinical practice. Biomarkers 17(2), 186–191 (2012)

    Article  CAS  PubMed  Google Scholar 

  24. S. Nölting, A. Kuttner, M. Lauseker, M. Vogeser, A. Haug, K.A. Herrmann et al. Chromogranin A as serum marker for gastroenteropancreatic neuroendocrine tumors: a single center experience and literature review. Cancers (Basel) 4, 141–155 (2012)

    Article  Google Scholar 

  25. A. Tirosh, G.Z. Papadakis, C. Millo, S.M. Sadowski, P. Herscovitch, K. Pacak et al. Association between neuroendocrine tumors biomarkers and primary tumor site and disease type based on total 68Ga-DOTATATE-Avid tumor volume measurements. Eur. J. Endocrinol. 176, 575–582 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. M. Stridsberg, B. Eriksson, K. Oberg, E.T. Janson, A comparison between three commercial kits for chromogranin A measurements. J. Endocrinol. 177, 337–341 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. P. Glinicki, R. Kapuścińska, W. Jeske, Improved diagnostic accuracy for neuroendocrine neoplasms using two chromogranin A assays: the importance of protein matrix effects. Clin. Endocrinol. (Oxf.). 79, 295–296 (2013)

    Article  PubMed  Google Scholar 

  28. M. Pavel, E. Baudin, A. Couvelard, E. Krenning, K. Öberg, T. Steinmüller et al. ENETS consensus guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology 95, 157–176 (2012)

    Article  CAS  PubMed  Google Scholar 

  29. C.A. Elisa, Instructions for use Chromogranin A ELISA DEE9000 (2016), Accessed 11 Sep 2017, http://www.ibl-international.com/en/chromogranin-a-elisa

  30. I.M. Modlin, I. Drozdov, D. Alaimo, S. Callahan, N. Teixiera, L. Bodei et al. A multianalyte PCR blood test outperforms single analyte ELISAs (chromogranin A, pancreastatin, neurokinin A) for neuroendocrine tumor detection. Endocr. Relat. Cancer 21, 615–628 (2014)

    Article  CAS  PubMed  Google Scholar 

  31. I.M. Modlin, M. Kidd, L. Bodei, I. Drozdov, H. Aslanian, The clinical utility of a novel blood-based multi-transcriptome assay for the diagnosis of neuroendocrine tumors of the gastrointestinal tract. Am. J. Gastroenterol. 110, 1223–1232 (2015)

    Article  CAS  PubMed  Google Scholar 

  32. S. Massironi, M. Fraquelli, S. Paggi, A. Sangiovanni, D. Conte, V. Sciola et al. Chromogranin A levels in chronic liver disease and hepatocellular carcinoma. Dig. Liver. Dis. 41, 31–35 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. S. Doğan, N. Atakan, Red blood cell distribution width is a reliable marker of inflammation in plaque psoriasis. Acta Dermatovenerol. Croat. 25, 26–31 (2017)

    PubMed  Google Scholar 

  34. V. Veeranna, S.K. Zalawadiya, S. Panaich, K.V. Patel, L. Afonso, Comparative analysis of red cell distribution width and high sensitivity C-reactive protein for coronary heart disease mortality prediction in multi-ethnic population: Findings from the 1999–2004 NHANES. Int. J. Cardiol. 168, 5156–5161 (2013)

    Article  PubMed  Google Scholar 

  35. Z.-D. Hu, Y. Chen, L. Zhang, Y. Sun, Y.-L. Huang, Q.-Q. Wang et al. Red blood cell distribution width is a potential index to assess the disease activity of systemic lupus erythematosus. Clin. Chim. Acta 425, 202–205 (2013)

    Article  CAS  PubMed  Google Scholar 

  36. N.S. Ku, H. Kim, H.J. Oh, Y.C. Kim, M.H. Kim, J.E. Song et al. Red blood cell distribution width is an independent predictor of mortality in patients with gram-negative bacteremia. Shock 38, 123–127 (2012)

    Article  PubMed  Google Scholar 

  37. J.H. Lee, H.J. Chung, K. Kim, Y.H. Jo, J.E. Rhee, Y.J. Kim et al. Red cell distribution width as a prognostic marker in patients with community-acquired pneumonia. Am. J. Emerg. Med. 31, 72–79 (2013)

    Article  PubMed  Google Scholar 

  38. T. Isakova, P. Wahl, G.S. Vargas, O.M. Gutiérrez, J. Scialla, H. Xie et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 79, 1370–1378 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. J. Silver, T. Naveh-Many, Phosphate and the parathyroid. Kidney Int. 75, 898–905 (2009)

    Article  CAS  PubMed  Google Scholar 

  40. R.F. Ritchie, G.E. Palomaki, L.M. Neveux, O. Navolotskaia, T.B. Ledue, W.Y. Craig, Reference distributions for alpha2-macroglobulin: a practical, simple and clinically relevant approach in a large cohort. J. Clin. Lab. Anal. 18, 139–147 (2004)

    Article  CAS  PubMed  Google Scholar 

  41. Healthcare statistics—statistics explained, http://ec.europa.eu/eurostat/statistics-explained/index.php/Healthcare_statistics. Accessed 11 Sept 2017

  42. Y. Wang, Q. Yang, Y. Lin, L. Xue, M. Chen, J. Chen, Chromogranin A as a marker for diagnosis, treatment, and survival in patients with gastroenteropancreatic neuroendocrine neoplasm. Medicine. (Baltim.). 93, e247 (2014)

    Article  Google Scholar 

  43. S. Massironi, R.E. Rossi, G. Casazza, D. Conte, C. Ciafardini, M. Galeazzi et al. Chromogranin A in diagnosing and monitoring patients with gastroenteropancreatic neuroendocrine neoplasms: a large series from a single institution. Neuroendocrinology 100, 240–249 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Kruljac.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Previous presentations of this work: This work has been presented in a form of poster presentation at 14th Annual ENETS Conference, March 2017, Barcelona, Spain.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruljac, I., Vurnek, I., Maasberg, S. et al. A score derived from routine biochemical parameters increases the diagnostic accuracy of chromogranin A in detecting patients with neuroendocrine neoplasms. Endocrine 60, 395–406 (2018). https://doi.org/10.1007/s12020-018-1592-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-018-1592-6

Keywords

Navigation