Endocrine

, Volume 59, Issue 1, pp 130–136 | Cite as

Oxidative stress in adult growth hormone deficiency: different plasma antioxidant patterns in comparison with metabolic syndrome

  • Antonio Mancini
  • Chantal Di Segni
  • Carmine Bruno
  • Giulio Olivieri
  • Francesco Guidi
  • Andrea Silvestrini
  • Elisabetta Meucci
  • Patrick Orlando
  • Sonia Silvestri
  • Luca Tiano
  • Alfredo Pontecorvi
Original Article

Abstract

Background and aims

Growth hormone deficiency (GHD) is a condition associated with increased cardiovascular risk and insulin-resistance. Oxidative stress (OS) could be a mechanism underlying both these phenomena. In order to investigate plasma antioxidant defenses in such condition, we evaluated adults with GHD, compared with controls and metabolic syndrome patients (MetS), studying plasma total antioxidant capacity (TAC) and coenzyme Q10 (CoQ10, lipophilic antioxidant) levels, both in its oxidized and reduced forms, correlating this data with metabolic and hormonal pattern.

Materials and methods

In this case-control study, 51 GHD, 36 controls, and 35 MetS were enrolled. An evaluation of hormonal and metabolic parameters was performed. TAC was measured using the system metmyoglobin -H202 and the chromogen ABTS, whose radical form is spectroscopically revealed; latency time (LAG) in the appearance of ABTS is proportional to antioxidant in sample. CoQ10 was assayed by electrochemical method.

Results

Despite HOMA index was higher in both GHD and MetS (2.2 ± 0.3 and 3.1 ± 0.3 vs. 1.2 ± 0.2 in controls), only in MetS we observed lower LAG levels (64.5 ± 3.1 s vs. 82.8 ± 5.8 in GHD and 80.6 ± 6.6 in controls), suggesting an increased consumption of antioxidants. LAG significantly correlated with uric acid only in MetS (r 2 = 0.65, p < 0.001), suggesting a different pattern of antioxidants. CoQ10 exhibited a trend toward lower levels in GHD, although not significant.

Conclusions

Our data indicate that GHD, although sharing with MetS various metabolic features, including increased HOMA levels, showed a different pattern of plasma antioxidants, suggesting inadequate reactivity toward radical production rather than an antioxidants consumption as in MetS.

Keywords

Pituitary Antioxidants Coenzyme Q10 Insulin-resistance Metabolic syndrome Precision medicine 

Notes

Acknowledgements

We would like to thank Mr. Primiano Palma for his skillful assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    A. Colao, P. Marzullo, C. Di Somma, G. Lombardi, Growth hormone and the heart. Clin. Endocrinol. (2001).  https://doi.org/10.1046/j.1365-2265.2001.01218.x
  2. 2.
    S.A. Beshyah, A. Henderson, R. Niththyanathan, P. Sharp, W. Richmond, D.G. Johnston, Metabolic abnormalities in growth hormone deficient adults: carbohydrate tolerance and lipid metabolism. Endocrinol. Metab. 1, 173–180 (1994)Google Scholar
  3. 3.
    T.A.M. Abdu, R. Neary, T.A. Elhadd, M. Akber, R.N. Clayton, Coronary risk in growth hormone deficient hypopituitary adults: increased predicted risk is due largely to lipid profile abnormalities. Clin. Endocrinol. (2001).  https://doi.org/10.1046/j.1365-2265.2001.01320.x
  4. 4.
    S.A. Beshyah, C. Freemantle, E. Thomas, B. Page, M. Murphy, D.G. Johnston, Abnormal body composition and reduced bone mass in growth hormone deficient hypopituitary adults. Clin. Endocrinol. (1995).  https://doi.org/10.1111/j.1365-2265.1995.tb01860.x
  5. 5.
    L. Lönn, G. Johansson, L. Sjöström, H. Kvist, A. Odén, B. Bengtsson, Body composition and tissue distributions in growth hormone deficient adults before and after growth hormone treatment. Obes. Res. (1996).  https://doi.org/10.1002/j.1550-8528.1996.tb00511.x
  6. 6.
    J.O. Jørgensen, S.A. Pedersen, L. Thuesen, J. Jørgensen, T. Ingemann-Hansen, N.E. Skakkebaek, J.S. Christiansen, Beneficial effects of growth hormone treatment in GH-deficient adults. Lancet (1989).  https://doi.org/10.1016/S0140-6736(89)92328-3
  7. 7.
    S.M. Libber, L.P. Plotnick, A.J. Johanson, R.M. Blizzard, P.O. Kwiterovich, C.J. Migeon, Long-term follow-up of hypopituitary patients treated with human growth hormone. Medicine (1990). https://doi.org/0025-7974/90/0046-0055$02.00/0Google Scholar
  8. 8.
    J.O. Johansson, K. Landin, L. Tengborn, T. Rosen, B.A. Bengtsson, High fibrinogen and plasminogen activator inhibitor activity in growth hormone-deficient adults. Arter. Thromb. (1994).  https://doi.org/10.1161/01.ATV.14.3.434
  9. 9.
    C.R. Palmiero, I.K. Anand R. Dardi, N. Balasubramaniyam, M.D. Schwarcz, I.A. Weiss, Growth hormone and the cardiovascular system. Cardiol. Rev. (2012).  https://doi.org/10.1097/CRD.0b013e318248a3e1
  10. 10.
    J. Verhelst, R. Abs, Cardiovascular risk factors in hypopituitary GH-deficient adults. Eur. J. Endocrinol. (2009).  https://doi.org/10.1530/EJE-09-0291
  11. 11.
    M. Leonsson, J. Hulthe, G. Johannsson, O. Wiklund, J. Wikstrand, B.A. Bengtsson, J. Oscarsson, Increased interleukin-6 levels in pituitary-deficient patients are independently related to their carotid intima-media thickness. Clin. Endocrinol. (2003).  https://doi.org/10.1046/j.1365-2265.2003.01832.x
  12. 12.
    R. Pérez, M. García-Fernández, M. Díaz-Sánchez, J.E. Puche, G. Delgado, M. Conchillo, J. Muntané, I. Castilla-Cortázar, Mitochondrial protection by low doses of insulin-like growth factor-I in experimental cirrhosis. World J. Gastroenterol. (2008).  https://doi.org/10.3748/wjg.14.2731
  13. 13.
    J.E. Puche, M. García-Fernández, J. Muntané, J. Rioja, S. González-Barón, I. Castilla-Cortázar, Low doses of insulin-like growth factor-I induce mitochondrial protection in aging rats. Endocrinology (2008).  https://doi.org/10.1210/en.2007-1563
  14. 14.
    M. García-Fernández, G. Delgado, J.E. Puche, S. González-Barón, I.C. Cortázar, Low doses of insulin-like growth factor I improve insulin resistance, lipid metabolism, and oxidative damage in aging rats. Endocrinology (2008).  https://doi.org/10.1210/en.2007-1190
  15. 15.
    A. Mancini, R. Festa, V. Di Donna, E. Leone, G.P. Littarru, A. Silvestrini, E. Meucci, A. Pontecorvi, Hormones and antioxidant systems: role of pituitary and pituitary-dependent axes. J. Endocrinol. Invest. (2010).  https://doi.org/10.1007/BF03346615
  16. 16.
    C.D. Rollo, J. Carlson, M. Sawada, Accelerated aging of giant transgenic mice is associated with elevated free radicals process. Can. J. Zool. 74, 606–620 (1996)CrossRefGoogle Scholar
  17. 17.
    H.M. Brown-Borg, A.M. Bode, A. Bartke, Antioxidative mechanism and plasma growth hormone levels: potential relationship in the aging process. Endocrinology (1999).  https://doi.org/10.1385/ENDO:11:1:41
  18. 18.
    A. Mancini, G.E. Martorana, M. Magini, R. Festa, S. Raimondo, A. Silvestrini, N. Nicolotti, A. Mordente, M.C. Mele, G.A.D. Miggiano, E. Meucci, Oxidative stress and metabolic syndrome: effects of a antioxidants enriched diet on insulin resistance. Clin. Nutr. (2015).  https://doi.org/10.1016/j.clnesp.2014.11.002
  19. 19.
    G.A. Aguirre, J.R. De Ita, R.G. de la Garza, I. Castilla-Cortazar, Insulin-like growth factor-1 deficiency and metabolic syndrome. J. Transl. Med. (2016).  https://doi.org/10.1186/s12967-015-0762-z
  20. 20.
    C. Rice-Evans, N.J. Miller, Total antioxidant status in plasma and body fluids. Methods Enzymol. (1994).  https://doi.org/10.1016/0076-6879(94)34095-1
  21. 21.
    G.P. Littarru, Energy and Defence (CESI, Roma1994)Google Scholar
  22. 22.
    A. Giustina, W. B. Weherenberg, Influence of thyroid hormones on the regulation of growth hormone secretion. Eur. J. Endocrinol. (1995).  https://doi.org/10.1530/eje.0.1330646
  23. 23.
    G. Mazziotti, A. Giustina, Glucocorticoids and the regulation of growth hormone secretion. Nat. Rev. Endocrinol. (2013).  https://doi.org/10.1038/nrendo.2013.5
  24. 24.
    D.R. Matthews, J.P. Hosker, A.S. Rudenski, B.A. Naylor, D.F. Treacher, R.C. Turner, Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia (1985).  https://doi.org/10.1007/BF00280883
  25. 25.
    E. Meucci, D. Milardi, A. Mordente, G.E. Martorana, E. Giacchi, L. De Marinis, A. Mancini, Total antioxidant capacity in patients with varicoceles. Fertil. Steril. (2003).  https://doi.org/10.1016/S0015-0282(03)00404-7
  26. 26.
    G.P. Littarru, L. Tiano, Clinical aspects of coenzyme Q10: an update. Curr. Opin. Clin. Nutr. Metab. Care (2005).  https://doi.org/10.1097/01.mco.0000171123.60665.16
  27. 27.
    H.M. Brown-Borg, A.M. Bode, A. Bartke, Antioxidative mechanisms and plasma growth hormone levels: potential relationship in the aging process. Endocrine (1999).  https://doi.org/10.1385/ENDO:11:1:41
  28. 28.
    S.J. Hauck, J.M. Aaron, C. Wright, J.J. Kopchick, A. Bartke, Antioxidant enzymes, free-radical damage, and response to paraquat in liver and kidney of long-living growth hormone receptor/binding protein gene-disrupted mice. Horm. Metab. Res. (2002).  https://doi.org/10.1055/s-2002-34787
  29. 29.
    S. Skhanov, Y. Higashi, S.Y. Shai, C. Blackstock, Z. Galvez, C. Vaughn, J. Titterington, P. Delafontaine, Differential requirement for nitric oxide in IGF-1-induced anti-apoptotic, anti-oxidant and anti-atherosclerotic effects. FEBBS Lett. (2001).  https://doi.org/10.1016/j.febslet.2011.08.029
  30. 30.
    J. Titterington, S. Skhanov, Y. Higashi, C. Vaughn, C. Bowres, P. Delafontaine, Growth hormone releasing peptide-2 suppressed vascular oxidative stress in ApoE-/- mice but does not reduce atherosclerosis. Endocrinology (2009).  https://doi.org/10.1210/en.2009-0283
  31. 31.
    T. Matsuda, H. Saito, T. Inoue, K. Fukatsu, I. Han, S. Furukawa, S. Ikeda, T. Muto, Growth hormone inhibits apoptosis and up-regulates reactive oxygen intermediates production by human polymorphonuclear neutrophils. J. Parenter. Enter. Nutr. (1998).  https://doi.org/10.1177/0148607198022006368
  32. 32.
    A. Sanz, R. Gredilla, R. Pamplona, M. Portero-Otin, E. Vara, J.A.F. Tresguerres, G. Barja, Effect of insulin and growth hormone on rat heart and liver oxidative stress in control and caloric restricted animals. Biogerontology (2005).  https://doi.org/10.1007/s10522-004-7380-0
  33. 33.
    F.R.F. Seiva, G.M.X. Ebaid, A.V.B. Castro, K. Okoshi, A. Nascimiento, K.K.H. Rocha, C.R. Padovani, A.C. Cicogna, E.L.B. Novelli, Growth hormone and heart failure: oxidative stress and energetic metabolism in rats. Growth Horm. IGF Res. (2008).  https://doi.org/10.1016/j.ghir.2007.11.002
  34. 34.
    A. Mohn, D. Marzio, C. Giannini, R. Capanna, M. Marcovecchio, F. Chiarelli, Alterations in the oxidant-antioxidant status in prepubertal children with growth hormone deficiency: effect of growth hormone replacement therapy. Clin. Endocrinol. (2005).  https://doi.org/10.1111/j.1365-2265.2005.02378.x
  35. 35.
    M. Scacchi, E. Valassi, A.I. Pincelli, L.M. Fatti, F.P. Giraldi, P. Ascoli, R. Viarengo, B. Cestaro, F. Cavagnini, R. Cazzola, Increased lipid peroxidation in adult GH-deficient patients: effects of short-term GH administration. J. Endocrinol. Invest. (2006).  https://doi.org/10.1007/BF03349194
  36. 36.
    J.C. Smith, D. Lang, J. McEneny, L.M. Evans, M.F. Scanlon, I. Young, J. Davies, Effects of GH on lipid peroxidation and neutrophil superoxide anion-generating capacity in hypopituitary adults with GH deficiency. Clin. Endocrinol. (2002).  https://doi.org/10.1046/j.1365-2265.2002.01493.x
  37. 37.
    M. Holzenberger, J. Dupont, B. Ducos, P. Leneuve, A. Geoloen, P.C. Even, P. Cervera, Y. Le Bouc, Igf-1 receptors regulates lifespan and resistance to oxidative stress in mice. Nature (2003).  https://doi.org/10.1038/nature01298
  38. 38.
    L. Fontana, L. Partridge, V.D. Longo, Extending healthy life span from yeast to humans. Science (2010).  https://doi.org/10.1126/science.1172539
  39. 39.
    Y. Suh, G. Atzmon, M.O. Cho, D. Hwang, B. Liu, D.J. Leahy, N. Barzilai, P. Cohen, Functionally significant insulin growth factor I receptor mutations in centenarians. Proc. Natl. Acad. Sci. USA (2008).  https://doi.org/10.1073/pnas.0705467105
  40. 40.
    J. Guevara-Aguirre, P. Balasubramanian, M. Guevara-Aguirre, M. Wei, F. Madia, C.W. Cheng, D. Hwang, A. Martin-Montalvo, J. Saavedra, S. Ingles, R. de Cabo, P. Cohen, V.D. Longo, Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci. Transl. Med. (2011).  https://doi.org/10.1126/scitranslmed.3001845
  41. 41.
    L. Giovannini, G. Tirabassi, G. Muscogiuri, C. Di Somma, A. Colao, G. Balercia, Impact of adult growth hormone deficiency on metabolic profile and cardiovascular risk. Endocr. J. 62(12), 1037–1048 (2015).  https://doi.org/10.1507/endocrj.EJ15-0337
  42. 42.
    E. Bonora, G. Targher, M. Alberiche, R.C. Bonadonna, F. Saggiani, M.B. Zenere, T. Monauni, M. Muggeo, Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care (2000).  https://doi.org/10.2337/diacare.23.1.57
  43. 43.
    P.A. Sarafidis, A.N. Lasaridis, P.M. Nilsson, M.I. Pikilidou, P.C. Stafilas, A. Kanaki, K. Kazakos, J. Yovos, G.L. Bakris, Validity and reproducibility of HOMA-IR, 1/HOMA-IR, QUICKI and McAuley’s indices in patients with hypertension and type II diabetes. J. Hum. Hypertens. (2007).  https://doi.org/10.1038/sj.jhh.1002201
  44. 44.
    D. Capalbo, A. Esposito, N. Improda, M.G. Wasniewska, R. Di Mase, F. De Luca, D. Bruzzese, M. Salerno, Glucose homeostasis in GHD children during long-term replacement therapy: a case-control study. Endocrine (2017).  https://doi.org/10.1007/s12020-017-1408-0
  45. 45.
    A. Galimov, A. Hartung, R. Trepp, A. Mader, M. Flück, A. Linke, M. Blüher, E. Christ, J. Krützfeldt, Growth hormone replacement therapy regulates microRNA-29a and targets involved in insulin resistance. J. Mol. Med. (2017).  https://doi.org/10.1007/s00109-015-1322-y

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Antonio Mancini
    • 1
  • Chantal Di Segni
    • 1
  • Carmine Bruno
    • 1
  • Giulio Olivieri
    • 1
  • Francesco Guidi
    • 2
  • Andrea Silvestrini
    • 3
  • Elisabetta Meucci
    • 3
  • Patrick Orlando
    • 4
  • Sonia Silvestri
    • 4
  • Luca Tiano
    • 4
  • Alfredo Pontecorvi
    • 1
  1. 1.Operative Unit of EndocrinologyCatholic University of the Sacred HeartRomeItaly
  2. 2.Department of Obstetrics and GynecologyCatholic University of the Sacred HeartRomeItaly
  3. 3.Institute of Biochemistry and Clinical BiochemistryCatholic University of the Sacred HeartRomeItaly
  4. 4.Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly

Personalised recommendations