Endocrine

, Volume 59, Issue 1, pp 151–163 | Cite as

PRMT1 promotes hyperglycemia in a FoxO1-dependent manner, affecting glucose metabolism, during hypobaric hypoxia exposure, in rat model

  • Susovon Bayen
  • Supriya Saini
  • Priya Gaur
  • Arul Joseph Duraisamy
  • Alpesh Kumar Sharma
  • Karan Pal
  • Praveen Vats
  • Shashi Bala Singh
Original Article

Abstract

Purpose

High-altitude (HA) environment causes changes in cellular metabolism among unacclimatized humans. Previous studies have revealed that insulin-dependent activation of protein kinase B (Akt) regulates metabolic processes via discrete transcriptional effectors. Moreover, protein arginine methyltransferase (PRMT)1-dependent arginine modification of forkhead box other (FoxO)1 protein interferes with Akt-dependent phosphorylation. The present study was undertaken to test the involvement of PRMT1 on FoxO1 activation during hypobaric hypoxia (HH) exposure in rat model.

Methods

Samples were obtained from normoxia control (NC) and HH-exposed (H) rats, subdivided according to the duration of HH exposure. To explore the specific role played by PRMT1 during HH exposure, samples from 1d pair-fed (PF) NC, 1d acute hypoxia-exposed (AH) placebo-treated, and 1d AH TC-E-5003-treated rats were investigated. Quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) was performed to determine expressions of glycolytic, gluconeogenic enzymes, and insulin response regulating genes. Immuno-blot and enzyme linked immunosorbent assay (ELISA) were used for insulin response regulating proteins. Nuclear translocation of FoxO1 was analyzed using deoxyribonucleic acid (DNA)-binding ELISA kit.

Results

We observed HH-induced increase in glycolytic enzyme expressions in hepatic tissue unlike hypothalamic tissue. PRMT1 expression increased during HH exposure, causing insulin resistance and resulting increase in FoxO1 nuclear translocation, leading to hyperglycemia. Conversely, PRMT1 inhibitor treatment promoted inhibition of FoxO1 activity and increase in glucose uptake during HH exposure leading to reduction in blood-glucose and hepatic glycogen levels.

Conclusions

PRMT1 might have a potential importance as a therapeutic target for the treatment of HH-induced maladies.

Keywords

Hypobaric hypoxia Insulin resistance Hyperglycemia Protein arginine methyltransferase 1 Protein kinase B Fork head box protein 

Notes

Acknowledgements

We thank Dr. N.K. Sethy and Dr. K. Ray for excellent technical support.

Author contributions

A.J.D., P.G., S.B., S.S. were involved in acquisition of data. S.B. conceived and designed the study, analyzed and interpretated the data, and drafted the article also. All authors contributed to the revising of the manuscript, and approved the final version of the manuscript.

Funding

The work was funded by the Defence Research and Development Organization (DRDO), Government of India. S.B., D.A.J., and P.G. are thankful to DRDO, and S.S. is thankful to the University Grants Commission (UGC) for junior/senior research fellowships.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The study protocol was approved by the Institutional Animal Ethics Committee.

References

  1. 1.
    N. Simler, A. Malgoyre, N. Koulmann, A. Alonso, A. Peinnequin, A.X. Bigard, Hypoxic stimulus alters hypothalamic AMP-activated protein kinase phosphorylation concomitant to hypophagia. J. Appl. Physiol. 102(6), 2135–2141 (2007).  https://doi.org/10.1152/japplphysiol.01150.2006 CrossRefPubMedGoogle Scholar
  2. 2.
    L. Zaccagni, D. Barbieri, A. Cogo, E. Gualdi-Russo, Anthropometric and body composition changes during expeditions at high altitude. High Alt. Med. Biol. 15(2), 176–182 (2014).  https://doi.org/10.1089/ham.2013.1133 CrossRefPubMedGoogle Scholar
  3. 3.
    Y. Luo, C. Kaur, E.A. Ling, Hypobaric hypoxia induces fos and neuronal nitric oxide synthase expression in the paraventricular and supraoptic nucleus in rats. Neurosci. Lett. 296(2-3), 145–148 (2000)CrossRefPubMedGoogle Scholar
  4. 4.
    E.M. van Dam, R. Govers, D.E. James, Akt activation is required at a late stage of insulin-induced GLUT4 translocation to the plasma membrane. Mol. Endocrinol. 19(4), 1067–1077 (2005).  https://doi.org/10.1210/me.2004-0413 CrossRefPubMedGoogle Scholar
  5. 5.
    D.A. Cross, D.R. Alessi, P. Cohen, M. Andjelkovich, B.A. Hemmings, Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378(6559), 785–789 (1995).  https://doi.org/10.1038/378785a0 CrossRefPubMedGoogle Scholar
  6. 6.
    C.M. Taniguchi, T. Kondo, M. Sajan, J. Luo, R. Bronson, T. Asano, R. Farese, L.C. Cantley, C.R. Kahn, Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKClambda/zeta. Cell Metab. 3(5), 343–353 (2006).  https://doi.org/10.1016/j.cmet.2006.04.005 CrossRefPubMedGoogle Scholar
  7. 7.
    T. Zhang, S. Wang, Y. Lin, W. Xu, D. Ye, Y. Xiong, S. Zhao, K.L. Guan, Acetylation negatively regulates glycogen phosphorylase by recruiting protein phosphatase 1. Cell Metab. 15(1), 75–87 (2012).  https://doi.org/10.1016/j.cmet.2011.12.005 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    H.S. Kwon, B. Huang, T.G. Unterman, R.A. Harris, Protein kinase B-alpha inhibits human pyruvate dehydrogenase kinase-4 gene induction by dexamethasone through inactivation of FOXO transcription factors. Diabetes 53(4), 899–910 (2004)CrossRefPubMedGoogle Scholar
  9. 9.
    D. Accili, K.C. Arden, FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117(4), 421–426 (2004)CrossRefPubMedGoogle Scholar
  10. 10.
    H. Ren, I.J. Orozco, Y. Su, S. Suyama, R. Gutierrez-Juarez, T.L. Horvath, S.L. Wardlaw, L. Plum, O. Arancio, D. Accili, FoxO1 target Gpr17 activates AgRP neurons to regulate food intake. Cell 149(6), 1314–1326 (2012).  https://doi.org/10.1016/j.cell.2012.04.032 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    I. Cakir, M. Perello, O. Lansari, N.J. Messier, C.A. Vaslet, E.A. Nillni, Hypothalamic Sirt1 regulates food intake in a rodent model system. PLoS ONE 4(12), e8322 (2009).  https://doi.org/10.1371/journal.pone.0008322 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    W. Zhang, S. Patil, B. Chauhan, S. Guo, D.R. Powell, J. Le, A. Klotsas, R. Matika, X. Xiao, R. Franks, K.A. Heidenreich, M.P. Sajan, R.V. Farese, D.B. Stolz, P. Tso, S.H. Koo, M. Montminy, T.G. Unterman, FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J. Biol. Chem. 281(15), 10105–10117 (2006).  https://doi.org/10.1074/jbc.M600272200 CrossRefPubMedGoogle Scholar
  13. 13.
    J. Nakae, B.C. Park, D. Accili, Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway. J. Biol. Chem. 274(23), 15982–15985 (1999)CrossRefPubMedGoogle Scholar
  14. 14.
    M. Aoki, H. Jiang, P.K. Vogt, Proteasomal degradation of the FoxO1 transcriptional regulator in cells transformed by the P3k and Akt oncoproteins. Proc. Natl. Acad. Sci. USA 101(37), 13613–13617 (2004).  https://doi.org/10.1073/pnas.0405454101 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    M. Kobayashi, O. Kikuchi, T. Sasaki, H.J. Kim, H. Yokota-Hashimoto, Y.S. Lee, K. Amano, T. Kitazumi, V.Y. Susanti, Y.I. Kitamura, T. Kitamura, FoxO1 as a double-edged sword in the pancreas: analysis of pancreas- and beta-cell-specific FoxO1 knockout mice. Am. J. Physiol. Endocrinol. Metab. 302(5), E603–E613 (2012).  https://doi.org/10.1152/ajpendo.00469.2011 CrossRefPubMedGoogle Scholar
  16. 16.
    M.T. Bedford, S.G. Clarke, Protein arginine methylation in mammals: who, what, and why. Mol. Cell 33(1), 1–13 (2009).  https://doi.org/10.1016/j.molcel.2008.12.013 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    K. Yamagata, H. Daitoku, Y. Takahashi, K. Namiki, K. Hisatake, K. Kako, H. Mukai, Y. Kasuya, A. Fukamizu, Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol. Cell 32(2), 221–231 (2008).  https://doi.org/10.1016/j.molcel.2008.09.013 CrossRefPubMedGoogle Scholar
  18. 18.
    D. Choi, K.J. Oh, H.S. Han, Y.S. Yoon, C.Y. Jung, S.T. Kim, S.H. Koo, Protein arginine methyltransferase 1 regulates hepatic glucose production in a FoxO1-dependent manner. Hepatology 56(4), 1546–1556 (2012).  https://doi.org/10.1002/hep.25809 CrossRefPubMedGoogle Scholar
  19. 19.
    A.J. Duraisamy, S. Bayen, S. Saini, A.K. Sharma, P. Vats, S.B. Singh, Changes in ghrelin, CCK, GLP-1, and peroxisome proliferator-activated receptors in a hypoxia-induced anorexia rat model. Endokrynol. Pol. 66(4), 334–341 (2015).  https://doi.org/10.5603/EP.2015.0043 CrossRefPubMedGoogle Scholar
  20. 20.
    K.A. Sikaris, The clinical biochemistry of obesity. The clinical biochemist. Reviews 25(3), 165–181 (2004)Google Scholar
  21. 21.
    R. Montgomery, Determination glycogen. Arch. Biochem. Biophys. 67(2), 378–386 (1957)CrossRefPubMedGoogle Scholar
  22. 22.
    C.M. Taniguchi, E.C. Finger, A.J. Krieg, C. Wu, A.N. Diep, E.L. LaGory, K. Wei, L.M. McGinnis, J. Yuan, C.J. Kuo, A.J. Giaccia, Cross-talk between hypoxia and insulin signaling through Phd3 regulates hepatic glucose and lipid metabolism and ameliorates diabetes. Nat. Med. 19(10), 1325–1330 (2013).  https://doi.org/10.1038/nm.3294 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    K. Wei, S.M. Piecewicz, L.M. McGinnis, C.M. Taniguchi, S.J. Wiegand, K. Anderson, C.W. Chan, K.X. Mulligan, D. Kuo, J. Yuan, M. Vallon, L.C. Morton, E. Lefai, M.C. Simon, J.J. Maher, G. Mithieux, F. Rajas, J.P. Annes, O.P. McGuinness, G. Thurston, A.J. Giaccia, C.J. Kuo, A liver HIF-2alpha-Irs2 pathway sensitizes hepatic insulin signaling and is modulated by Vegf inhibition. Nat. Med. 19(10), 1331–1337 (2013).  https://doi.org/10.1038/nm.3295 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    O. Warburg, On the origin of cancer cells. Science 123(3191), 309–314 (1956)CrossRefPubMedGoogle Scholar
  25. 25.
    B. Faubert, G. Boily, S. Izreig, T. Griss, B. Samborska, Z. Dong, F. Dupuy, C. Chambers, B.J. Fuerth, B. Viollet, O.A. Mamer, D. Avizonis, R.J. DeBerardinis, P.M. Siegel, R.G. Jones, AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 17(1), 113–124 (2013).  https://doi.org/10.1016/j.cmet.2012.12.001 CrossRefPubMedGoogle Scholar
  26. 26.
    S.P. Mathupala, A. Rempel, P.L. Pedersen, Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. J. Biol. Chem. 276(46), 43407–43412 (2001).  https://doi.org/10.1074/jbc.M108181200 CrossRefPubMedGoogle Scholar
  27. 27.
    U. Roth, K. Curth, T.G. Unterman, T. Kietzmann, The transcription factors HIF-1 and HNF-4 and the coactivator p300 are involved in insulin-regulated glucokinase gene expression via the phosphatidylinositol 3-kinase/protein kinase B pathway. J. Biol. Chem. 279(4), 2623–2631 (2004).  https://doi.org/10.1074/jbc.M308391200 CrossRefPubMedGoogle Scholar
  28. 28.
    H.H. Marti, H.H. Jung, J. Pfeilschifter, C. Bauer, Hypoxia and cobalt stimulate lactate dehydrogenase (LDH) activity in vascular smooth muscle cells. Pflugers Archiv 429(2), 216–222 (1994)CrossRefPubMedGoogle Scholar
  29. 29.
    J.W. Kim, I. Tchernyshyov, G.L. Semenza, C.V. Dang, HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3(3), 177–185 (2006).  https://doi.org/10.1016/j.cmet.2006.02.002 CrossRefPubMedGoogle Scholar
  30. 30.
    A. Minchenko, I. Leshchinsky, I. Opentanova, N. Sang, V. Srinivas, V. Armstead, J. Caro, Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J. Biol. Chem. 277(8), 6183–6187 (2002).  https://doi.org/10.1074/jbc.M110978200 CrossRefPubMedGoogle Scholar
  31. 31.
    S. Guo, G. Rena, S. Cichy, X. He, P. Cohen, T. Unterman, Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J. Biol. Chem. 274(24), 17184–17192 (1999)CrossRefPubMedGoogle Scholar
  32. 32.
    T. Porstmann, B. Griffiths, Y.L. Chung, O. Delpuech, J.R. Griffiths, J. Downward, A. Schulze, PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene 24(43), 6465–6481 (2005).  https://doi.org/10.1038/sj.onc.1208802 CrossRefPubMedGoogle Scholar
  33. 33.
    M. Matsumoto, A. Pocai, L. Rossetti, R.A. Depinho, D. Accili, Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab. 6(3), 208–216 (2007).  https://doi.org/10.1016/j.cmet.2007.08.006 CrossRefPubMedGoogle Scholar
  34. 34.
    M. Milkiewicz, E. Roudier, J.L. Doyle, A. Trifonova, O. Birot, T.L. Haas, Identification of a mechanism underlying regulation of the anti-angiogenic forkhead transcription factor FoxO1 in cultured endothelial cells and ischemic muscle. Am. J. Pathol. 178(2), 935–944 (2011).  https://doi.org/10.1016/j.ajpath.2010.10.042 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    S. Zhang, Y. Zhao, M. Xu, L. Yu, Y. Zhao, J. Chen, Y. Yuan, Q. Zheng, X. Niu, FoxO3a modulates hypoxia stress induced oxidative stress and apoptosis in cardiac microvascular endothelial cells. PLoS ONE 8(11), e80342 (2013).  https://doi.org/10.1371/journal.pone.0080342 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    W.J. Bakker, I.S. Harris, T.W. Mak, FoxO3a is activated in response to hypoxic stress and inhibits HIF1-induced apoptosis via regulation of CITED2. Mol. Cell 28(6), 941–953 (2007).  https://doi.org/10.1016/j.molcel.2007.10.035 CrossRefPubMedGoogle Scholar
  37. 37.
    S.K. Lim, Y.W. Jeong, D.I. Kim, M.J. Park, J.H. Choi, S.U. Kim, S.S. Kang, H.J. Han, S.H. Park, Activation of PRMT1 and PRMT5 mediates hypoxia- and ischemia-induced apoptosis in human lung epithelial cells and the lung of miniature pigs: the role of p38 and JNK mitogen-activated protein kinases. Biochem. Biophys. Res. Commun. 440(4), 707–713 (2013).  https://doi.org/10.1016/j.bbrc.2013.09.136 CrossRefPubMedGoogle Scholar
  38. 38.
    K. Hirota, J. Sakamaki, J. Ishida, Y. Shimamoto, S. Nishihara, N. Kodama, K. Ohta, M. Yamamoto, K. Tanimoto, A. Fukamizu, A combination of HNF-4 and Foxo1 is required for reciprocal transcriptional regulation of glucokinase and glucose-6-phosphatase genes in response to fasting and feeding. J. Biol. Chem. 283(47), 32432–32441 (2008).  https://doi.org/10.1074/jbc.M806179200 CrossRefPubMedGoogle Scholar
  39. 39.
    D.T. Duong, M.E. Waltner-Law, R. Sears, L. Sealy, D.K. Granner, Insulin inhibits hepatocellular glucose production by utilizing liver-enriched transcriptional inhibitory protein to disrupt the association of CREB-binding protein and RNA polymerase II with the phosphoenol pyruvate carboxykinase gene promoter. J. Biol. Chem. 277(35), 32234–32242 (2002).  https://doi.org/10.1074/jbc.M204873200 CrossRefPubMedGoogle Scholar
  40. 40.
    P.B. Iynedjian, D. Jotterand, T. Nouspikel, M. Asfari, P.R. Pilot, Transcriptional induction of glucokinase gene by insulin in cultured liver cells and its repression by the glucagon-cAMP system. J. Biol. Chem. 264(36), 21824–21829 (1989)PubMedGoogle Scholar
  41. 41.
    K.D. Niswender, C. Postic, T.L. Jetton, B.D. Bennett, D.W. Piston, S. Efrat, M.A. Magnuson, Cell-specific expression and regulation of a glucokinase gene locus transgene. J. Biol. Chem. 272(36), 22564–22569 (1997)CrossRefPubMedGoogle Scholar
  42. 42.
    H. Yamashita, M. Takenoshita, M. Sakurai, R.K. Bruick, W.J. Henzel, W. Shillinglaw, D. Arnot, K. Uyeda, A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc. Natl. Acad. Sci. USA 98(16), 9116–9121 (2001).  https://doi.org/10.1073/pnas.161284298 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    V.N. Lafleur, S. Richard, D.E. Richard, Transcriptional repression of hypoxia-inducible factor-1 (HIF-1) by the protein arginine methyltransferase PRMT1. Mol. Biol. Cell 25(6), 925–935 (2014).  https://doi.org/10.1091/mbc.E13-07-0423 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    E.M. Bissinger, R. Heinke, A. Spannhoff, A. Eberlin, E. Metzger, V. Cura, P. Hassenboehler, J. Cavarelli, R. Schule, M.T. Bedford, W. Sippl, M. Jung, Acyl derivatives of p-aminosulfonamides and dapsone as new inhibitors of the arginine methyltransferase hPRMT1. Bioorg. Med. Chem. 19(12), 3717–3731 (2011).  https://doi.org/10.1016/j.bmc.2011.02.032 CrossRefPubMedGoogle Scholar
  45. 45.
    A.R. Saltiel, C.R. Kahn, Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414(6865), 799–806 (2001).  https://doi.org/10.1038/414799a CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Susovon Bayen
    • 1
  • Supriya Saini
    • 1
  • Priya Gaur
    • 1
  • Arul Joseph Duraisamy
    • 1
  • Alpesh Kumar Sharma
    • 1
  • Karan Pal
    • 1
  • Praveen Vats
    • 1
  • Shashi Bala Singh
    • 2
  1. 1.Endocrinology & Metabolism DivisionDefence Institute of Physiology and Allied SciencesDelhiIndia
  2. 2.Department of Applied PhysiologyDefence Institute of Physiology and Allied SciencesDelhiIndia

Personalised recommendations